(15分)如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球。现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气阻力影响,求:⑴地面上DC两点间的距离s;⑵轻绳所受的最大拉力大小。
如图所示,固定于水平桌面上足够长的两平行导轨PQ、MN,PQ、MN的电阻不计,间距为P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B=0.2T的匀强磁场中.电阻均为,质量分别为和的两金属棒L1、L2平行的搁在光滑导轨上,现固定棒L1,L2在水平恒力F=0.8N的作用下,由静止开始做加速运动,试求:(1)当电压表的读数为U=0.2V时,棒L2的加速度多大?(2)棒L2能达到的最大速度。
如图所示,金属杆放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长宽 回路总电阻回路处在竖直向上的磁场中,金属杆用水平绳通过定滑轮连接质量的木块,磁感应强度从开始随时间均匀增强,5s末木块将离开水平面,不计一切摩擦,g取,求回路中的电流强度。
如图所示(俯视),MN和PQ是两根固定在同一水平面上的足够长且电阻不计的平行金属导轨.两导轨间距为L=0.2m,其间有一个方向垂直水平面竖直向下的匀强磁场B1=5.0T。导轨上NQ之间接一电阻R1=0.40,阻值为R2=0.10的金属杆垂直导轨放置并与导轨始终保持良好接触。两导轨右端通过金属导线分别与电容器C的两极相连。电容器C紧靠着带小孔a(只能容一个粒子通过)的固定绝缘弹性圆筒。圆筒内壁光滑,筒内有垂直水平面竖直向下的匀强磁场B2,O是圆筒的圆心,圆筒的内半径为r=0.40m。(1)用一个大小恒为10N,平行于MN水平向左的外力F拉金属杆,使杆从静止开始向左运动求:当金属杆最终匀速运动时杆的速度大小;(2)当金属杆处于(1)问中的匀速运动状态时,电容器C内紧靠极板且正对a孔的D处有一个带正电的粒子从静止开始经电容器C加速后从a孔垂直磁场B2并正对着圆心O进入筒中,该带电粒子与圆筒壁碰撞四次后恰好又从小孔a射出圆筒。已知粒子的比荷q/m=5×107(C/kg),该带电粒子每次与筒壁发生碰撞时电量和能量都不损失,不计粒子重力和空气阻力,则磁感应强度B2多大(结果允许含有三角函数式)。
如图(a)所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为M1的物体,∠ACB=30°;如图(b)中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳CF拉住一个质量为M2的物体,求:(1)细绳AC段的张力TAC与细绳EG的张力TEG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.
有些人,像电梯修理员、牵引专家和赛艇运动员,常需要知道绳或金属线中的张力,可又不能到那些绳、线的自由端去测量.一家英国公司现在制造出一种夹在绳上的仪表,用一个杠杆使绳子的某点有一个微小偏移量,如图所示,仪表很容易测出垂直于绳的恢复力.推导一个能计算绳中张力的公式.如果偏移量为12 mm,恢复力为300 N,计算绳中张力.