如图,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向里。一带正电荷的粒子沿图中直线以速率v0从圆上的a点射入柱形区域,从圆上b点射出(b点图中未画)磁场时速度方向与射入时的夹角为60°。已知圆心O到直线的距离为。现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a点射入柱形区域,也在b点离开该区域。不计重力,求:(1)粒子的比荷(电荷与质量的比值);(2)电场强度的大小。
额定功率为80kW的汽车,在平直公路上行驶的最大速度是20m/s。汽车的质量为2.0×103kg。如果汽车从静止开始做匀加速直线运动,加速度的大小是2m/s2,运动过程中阻力不变。求: (1)汽车受到的阻力多大? (2)3s末汽车的瞬时功率是多大? (3)汽车维持匀加速运动的时间是多少?
如图所示,倾角450高h的固定斜面。右边有一高3h/2的平台,平台顶部左边水平,上面有一质量为M的静止小球B,右边有一半径为h的1/4圆弧。质量为m的小球A从斜面底端以某一初速度沿斜面上滑,从斜面最高点飞出后恰好沿水平方向滑上平台,与B发生弹性碰撞,碰后B从圆弧上的某点离开圆弧。所有接触面均光滑,A、B均可视为质点,重力加速度为g。 (1)求斜面与平台间的水平距离S和A的初速度v0; (2)若M=2m,求碰后B的速度; (3)若B的质量M可以从小到大取不同值,碰后B从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为α。求cosα的取值范围。
如图所示,坐标系xoy在竖直平面内,y轴的正方向竖直向上,y轴的右侧广大空间存在水平向左的匀强电场E1=2N/C,y轴的左侧广大空间存在匀强电场,磁场方向垂直纸面向外,B=1T,电场方向竖直向上,E2=2N/C。t=0时刻,一个带正电的质点在O点以v=2m/s的初速度沿着与x轴负方向成450角射入y轴的左侧空间,质点的电量为q=106C,质量为m=2×10-7kg,重力加速度g=10m/s2。求: (1)质点从O点射入后第一次通过y轴的位置; (2)质点从O点射入到第二次通过y轴所需时间; (3)质点从O点射入后第四次通过y轴的位置。
(I)如图甲所示,质量为m的物块在水平恒力F的作用下,经时间t从A点运动到B点,物块在A点的速度为v1,B点的速度为v2,物块与粗糙水平面之间动摩擦因数为µ,试用牛顿第二定律和运动学规律推导此过程中动量定理的表达式,并说明表达式的物理意义。 (II)物块质量m =1kg静止在粗糙水平面上的A点,从t=0时刻开始,物块在受按如图乙所示规律变化的水平力F作用下向右运动,第3s末物块运动到B点时速度刚好为零,第5s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数为µ=0.2,(g取10m/s2)求: (1)AB间的距离; (2)水平力F在5s时间内对物块的冲量。
已知地球与火星的质量之比是8∶1,半径之比是 2∶1,在地球表面用一恒力沿水平方向拖一木箱,箱子能获得10m/s2的加速度。将此箱子送上火星表面,仍用该恒力沿水平方向拖木箱,则木箱产生的加速度为多大?已知木箱与地球和火星表面的动摩擦因数均为0.5,地球表面g = 10m/s2。