如图,质量为M、长为L的长木板放在光滑水平地面上,一个质量也是M的小滑块(可视为质点)以速度v0从左端冲上长木板,如果长木板固定,小滑块恰好滑到木板右端。试求:Ⅰ.小滑块与长木板之间的动摩擦因数;Ⅱ.如果长木板不固定,小滑块在长木板上滑行过程中产生的热量。
如图所示的滑轮,它可以绕垂直于纸面的光滑固定水平轴O转动,轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m,电阻为r的金属杆.在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为Bo的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,忽略所有摩擦,求:(1)重物匀速下降的速度v;(2)重物从释放到下降h对的过程中,电阻R中产生的焦耳热QR;(3)若将重物下降h时的时刻记作t=0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰 好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式).
如图,一匀强磁场磁感应强度为B,方向垂直纸面向里,其边界是半径为R的圆.MN为圆的一直径.在M点有一粒子源可以在圆平面内向不同方向发射质量m、电量-q速度为v的 粒子,粒子重力不计,其运动轨迹半径大于R.(1)求粒子在圆形磁场中运动的最长时间(答案中可包含某角度,需注明该角度的正弦或余弦 值);(2)试证明:若粒子沿半径方向入射,则粒子一定沿半径方向射出磁场.
如图所示,水平轨道AB与位于竖直面内半径为R的半圆形光滑轨道BCD相连,半圆形轨道的直径BD与AB垂直,水平轨道上有一质量m=1.0kg可看作质点的小滑块,滑块与水平 轨道间的动摩擦因数μ=0.5.现使滑块从水平轨道上某点静止起出发,在水平向右的恒力F作用下运动,到达水平轨道的末端B点时撤去外力F,小滑块继续沿半圆形轨道运动;恰好能通过轨道最高点D,滑块脱离半圆形轨道后又刚好落到其出发点,g取10m/s2.(1)当R=0.90m时,求其出发点到B点之间的距离x及滑块经过B点进入圆形轨道时对轨道的压力大小;(2)小明同学认为:若半圆形光滑轨道BCD的半径R取不同数值,仍要使物体恰好能通过D点飞离圆轨道并刚好落回其对应的出发点,恒定外力F的大小也应随之改变。你是否同意他的观点,若同意,求出F与R的关系式;若不同意,请通过计算说明。
如图甲所示,一物块在t=0时刻,以初速度v0=4m/s从足够长的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示,t=0.5s时刻物块到达最高点,t=1.5s时刻物块又 返回底端.求:(1)物块上滑和下滑的加速度大小a1,、a2;(2)斜面的倾角θ及物块与斜面间的动摩擦因数μ,
.如图所示,匀强电场方向沿x轴的正方向,场强为E.在A(l,0)点有一个质量为m,电荷 量为q的粒子,以沿y轴负方向的初速度v。开始运动,经过一段时间到达B(0,-l)点,(不计重力作用).求:(1)粒子的初速度v0的大小;(2)当粒子到达B点时的速度v的大小