如图所示,在空间中取直角坐标系Oxy,在第一象限内平行于y轴的虚线MN与y轴距离为d,从y轴到MN之间的区域充满一个沿y轴正方向的匀强电场,场强大小为E。初速度可以忽略的电子经过另一个电势差为U的电场加速后,从y轴上的A点以平行于x轴的方向射入第一象限区域,A点坐标为(0,h)。已知电子的电量为e,质量为m,加速电场的电势差U>,电子的重力忽略不计,求:(1)电子从A点进入电场到离开该电场区域所经历的时间t和离开电场区域时的速度v;(2)电子经过x轴时离坐标原点O的距离l。
在航天事业中要用角速度计可测得航天器自转的角速度,其结构如图所示,当系统绕OO/转动时,元件A在光滑杆上发生滑动,并输出电信号成为航天器的制导信号源。已知A质量为m,弹簧的劲度系数为k,原长为L0,电源电动势为E,内阻不计,滑动变阻器总长为L,电阻分布均匀,系统静止时滑动变阻器触头P在中点,与固定接头Q正对,当系统以角速度转动时,求: (1)弹簧形变量x与的关系式; (2)电压表的示数U与角速度的关系式
根据如图所示的振动图象: (1)算出下列时刻振子对平衡位置的位移. ①t1="0.5" s;②t2=1.5s. (2)将位移时间的变化规律写成x=Asin(ωt+φ)的 形式并指出振动的初相位.
如图所示,在连有电阻R=3r的裸铜线框ABCD上,以AD为对称轴放置另一个正方形的小裸铜线框abcd,整个小线框处于垂直框面向里、磁感强度为B的匀强磁场中.已知小线框每边长L,每边电阻为r,其它电阻不计。现使小线框以速度v向右平移,求通过电阻R的电流及R两端的电压.
已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响。 (1)推导第一宇宙速度v1的表达式; (2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行 周期T。
如图,光滑水平面上有两枚铁钉A和B,它们相距0.2m,长1m的柔软细线拴在A上,另一端系一个质量为0.5kg的小球,小球的初始位置在AB连线上A的一侧,且细线伸直,给小球以3m/s垂直细线方向的水平速度使它做圆周运动,由于钉子B的存在,使线逐渐缠在AB上,求: (1)如果细线不会断裂,从小球开始运动到完全缠在AB上所需要的时间。 (2)如果细线的抗断力为9N,从开始运动到线断裂需多长时间?