如图甲所示,水平光滑的桌面上静止放置一条长为的纸带,纸带上正中间位置放置有一质量为的小铁块,纸带的左边恰好在桌面的左边缘,小铁块与纸带间的动摩擦因数为.现让纸带从时刻开始一直保持的速度向左匀速运动.已知桌面高度为,,小铁块在运动过程中不翻滚,不计空气阻力.求:(1)小铁块从开始运动到桌面边缘过程所经历的时间并在乙图画出此过程中小铁块的图象;(2)小铁块抛出后落地点到抛出点的水平距离;(3)小铁块从开始运动到桌面边缘过程中产生的内能。
如图所示,AKD为竖直平面内固定的光滑绝缘轨道,轨道间均平滑连接,AK段水平,其间分布有一水平向右的匀强电场I。PQ为同一竖直面内的固定光滑水平轨道。自D点向右宽度L=0.7m的空间,分布有水平向右、场强大小E=1.4×105N/C的匀强电场II。质量m2=0.1kg、长度也为L的不带电绝缘平板,静止在PQ上并恰好处于电场II中,板的上表面与弧形轨道相切于D点。AK轨道上一带正电的小物体从电场I的左边界由静止开始运动,并在D点以速度v=1m/s滑上平板。已知小物体的质量m1=10-2kg,电荷量q=+10-7C,与平板间的动摩擦因数,AK与D点的垂直距离为h=0.3m,小物体离开电场II时速度比平板的大、小物体始终在平板上。设小物体电荷量保持不变且视为质点,取g=10m/s2。求: (1)电场I左右边界的电势差; (2)小物体从离开电场II开始,到平板速度最大时,所需要的时间。
如图所示,一辆质量M="3" kg的小车A静止在光滑的水平面上,小车上有一质量m="l" kg的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为Ep=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求: ①小球脱离弹簧时的速度大小; ②在整个过程中,小车移动的距离。
如图所示,横截面(纸面)为△ABC的三棱镜置于空气中,顶角∠A=60°.纸面内一细光束以入射角i射入AB面,直接到达AC面并射出,光束在通过三棱镜时出射光与入射光的夹角为(偏向角).改变入射角i,当i=i0时,从AC面射出的光束的折射角也为i0,理论计算表明在此条件下偏向角有最小值.求三棱镜的折射率n.
一气缸质量为M=60kg(气缸的厚度忽略不计且透热性良好),开口向上放在水平面上,气缸中有横截面积为S=100cm2的光滑活塞,活塞质量m=10kg.气缸内封闭了一定质量的理想气体,此时气柱长度为L1="0.4" m.已知大气压为po=1×105Pa.现用力缓慢向上拉动活塞,若使气缸能离开地面,气缸的高度至少是多少?(取重力加速度g=l0m/s2。)
如图(甲)所示,两带等量异号电荷的平行金属板平行于x轴放置,板长为L,两板间距离为2y0,金属板的右侧宽为L的区域内存在如图(乙)所示周期性变化的磁场,磁场的左右边界与x轴垂直.现有一质量为m,带电荷量为+q的带电粒子,从y轴上的 A点以速度v0沿x轴正方向射入两板之间,飞出电场后从点(L,0)进入磁场区域,进入时速度方向与x轴夹角为30°,把粒子进入磁场的时刻做为零时刻,以垂直于纸面向里作为磁场正方向,粒子最后从x轴上(2L,0)点与x轴正方向成30°夹角飞出磁场,不计粒子重力. (1)求粒子在两板间运动时电场力对它所做的功; (2)计算两板间的电势差并确定A点的位置; (3)写出磁场区域磁感应强度B0的大小、磁场变化周期T应满足的表达式.