宇航员在月球表面完成下面的实验:在一固定的竖直光滑圆轨道内部最低点静止一个质量为m的小球(可视为质点),如图所示.当给小球一瞬间的速度v时,刚好能使小球在竖直平面内做完整的圆周运动,已知圆弧的轨道半径为r,月球的半径为R1,引力常量为G.求:(1)若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?(2)轨道半径为2R1的环月卫星周期为多大?
如图为某生产流水线工作原理示意图.足够长的工作平台上有一小孔A,一定长度的操作板(厚度可忽略不计)静止于小孔的左侧,某时刻开始,零件(可视为质点)无初速地放上操作板的中点,同时操作板在电动机带动下向右做匀加速直线运动,直至运动到A孔的右侧(忽略小孔对操作板运动的影响),最终零件运动到A孔时速度恰好为零,并由A孔下落进入下一道工序.已知零件与操作板间的动摩擦因数μ1=0.05,零件与与工作台间的动摩擦因数μ2=0.025,不计操作板与工作台间的摩擦.重力加速度g=10m/s2.求:(1)操作板做匀加速直线运动的加速度大小;(2)若操作板长L=2m,质量M=3kg,零件的质量m=0.5kg,则操作板从A孔左侧完全运动到右侧的过程中,电动机至少做多少功?
如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R,A端与圆心O等高,AD为水平面,B点为光滑轨道的最高点且在O的正上方,一个小球在A点正上方由静止释放,自由下落至A点进入圆轨道并恰好能通过B点,最后落到水平面C点处.求:(1)释放点距A点的竖直高度;(2)落点C到A点的水平距离.
一种电磁缓冲装置,能够产生连续变化的电磁斥力,有效缓冲车辆间的速度差,避免车辆间发生碰撞和追尾事故。下图虚线框内为某种电磁缓冲车的结构示意图,在缓冲车的底部还安装有电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B,在缓冲车的PQ、MN导轨内有一个由高强度材料制成的缓冲滑块K,滑块K可以在导轨上无摩擦地滑动。在滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab的连线长为L,缓冲车在光滑水平面上运动。(1)如果缓冲车以速度v0与障碍物碰撞后滑块K立即停下,求缓冲车厢速度减半时滑块K上线圈内的感应电流大小和方向;(2)如果缓冲车以速度v0与障碍物碰撞后滑块K立即停下,求缓冲车厢从碰撞到停下过程中通过的位移(设缓冲车厢与滑块K始终不相撞);(3)设缓冲车厢质量为m1 ,滑块K质量为m2,如果缓冲车以速度v匀速运动时.在它前进的方向上有一个质量为m3的静止物体C,滑块K与物体C相撞后粘在一起。碰撞时间极短。设m1 = m2 = m3 = m, cd边进入磁场之前,缓冲车(包括滑块K)与物体C达到相同的速度,求相互作用的整个过程中线圈abcd产生的焦耳热。(物体C与水平面间摩擦不计)
图为“双聚焦分析器”质谱仪的结构示意图,其中,加速电场的电压为,静电分析器中与圆心等距离的各点场强大小相等、方向沿径向,磁分析器中以为圆心、圆心角为90°的扇形区域内,分布着方向垂直于纸面的匀强磁场,其左边界与静电分析器的右端面平行。由离子源发出的一质量为、电荷量为的正离子(初速度为零,重力不计)经加速电场加速后,从点从垂直于电场方向进入静电分析器,沿半径为的四分之一圆弧轨迹做匀速圆周运动,从点射出,接着由点垂直磁分析器的左边界射入,最后垂直于下边界从点射出并进入收集器。已知点与圆心的距离为。求:(1)磁分析器中磁场的磁感应强度的大小和方向;(2)静电分析器中离子运动轨迹处电场强度的大小;(3)现将离子换成质量为、电荷量仍为的另一种正离子,其它条件不变。试分析指出该离子进入磁分析器时的位置,它射出磁场的位置在点的左侧还是右侧?
某学习小组,为了研究电梯的运行情况。利用传感器进行实验。在竖直方向运行的电梯中,拉力的传感器下方悬挂一重物,电梯从某楼层由静止出发,到另一楼层停止,途中有一阶段做匀速直线运动。传感器的屏幕上显示出传感器受的拉力与时间的关系图像,如图所示。(重力加速度g=10m/s2)(1)说明电梯在前2秒内加速度、速度怎么变化,并判定电梯是上行还是下行。(2)求电梯运动中加速度的最大值。(3)求全过程拉力对重物的冲量。