某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移x1=3m,着地时由于存在能量损失,着地后速度变为v=4m/s,并以此为初速沿水平地面滑行x2=8m后停止于C点.已知人与滑板的总质量m=60kg,g=10m/s2。(空气阻力忽略不计) 。求(1) 人与滑板离开平台时的水平初速度;(2) 人与滑板在水平地面滑行时受到的平均阻力大小。
如图所示,水平面上紧靠放置着等厚的长木板B、C(未粘连),它们的质量均为M=2kg。在B木板的左端放置着质量为m=1kg的木块A(可视为质点)。A与B、C间的动摩擦因数均为μ1=0.4,B、C与水平面间的动摩擦因数均为μ2=0.1,滑动摩擦力等于最大静摩擦力。开始整个系统处于静止,现对A施加水平向右的恒定拉力F=6N,测得A在B、C上各滑行了1s后,从C的右端离开木板。求:⑴木板B、C的长度lB、lC;⑵若在木块A滑上C板的瞬间撤去拉力F,木块A从开始运动到再次静止经历的总时间t(此问答案保留3位有效数字)。
如图所示一辆箱式货车的后视图。该箱式货车在水平路面上做弯道训练。圆弧形弯道的半径为R=8m,车轮与路面间的动摩擦因数为μ=0.8,滑动摩擦力等于最大静摩擦力。货车顶部用细线悬挂一个小球P,在悬点O处装有拉力传感器。车沿平直路面做匀速运动时,传感器的示数为F0=4N。取g=10m/s2。⑴该货车在此圆弧形弯道上做匀速圆周运动时,为了防止侧滑,车的最大速度vm是多大?⑵该货车某次在此弯道上做匀速圆周运动,稳定后传感器的示数为F=5N,此时细线与竖直方向的夹角θ是多大?此时货车的速度v是多大?
两个完全相同的物块A、B质量均为m=0.8kg,在同一粗糙水平面上以相同的初速度从同一位置开始运动。图中的两条直线分别表示受到水平拉力F作用的A物块和不受拉力作用的B物块的v-t图线。取g=10m/s2。求:⑴物块与水平面间的动摩擦因数μ;⑵物块A所受拉力F的大小;⑶B刚好停止运动时刻物块A、B之间的距离d。
对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型。A、B两物体位于光滑水平面上,仅限于沿同一直线运动。当它们之间的距离大于等于某一定值d时,相互作用力为零;当它们之间的距离小于d时,存在大小恒为F的斥力。设A物体质量=1.0kg,开始时静止在直线上某点;B物体质量=3.0kg,以速度从远处沿该直线向A运动,如图所示。若d=0.10m,F=0.60N,=0.20m/s,求:(1)相互作用过程中A、B加速度的大小;(2)从开始相互作用到A、B间的距离最小时,系统(物体组)动能的减少量;(3)A、B间的最小距离。
如图所示,质量M=100kg的平板车静止在水平路面上,车身平板离地面的高度h=1.25m。质量m=50kg的小物块(可视为质点)置于车的平板上,到车尾的距离b=1.0m,物块与车板间、车板与地面间的动摩擦因数均为=0.20。今对平板车施一水平恒力,使车向右行驶,结果物块从车板上滑落。物块刚离开车板的时刻,车向右行驶的距离=2.0m。求: (1)物块在车板上滑行时间; (2)对平板车施加的水平恒力F; (3)物块落地时,落地点到车尾的水平距离。(取g=10m/s2)