某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移x1=3m,着地时由于存在能量损失,着地后速度变为v=4m/s,并以此为初速沿水平地面滑行x2=8m后停止于C点.已知人与滑板的总质量m=60kg,g=10m/s2。(空气阻力忽略不计) 。求(1) 人与滑板离开平台时的水平初速度;(2) 人与滑板在水平地面滑行时受到的平均阻力大小。
甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。
摩天大楼中一部直通高层的客运电梯,行程超过百米。电梯的简化模型如1所示。考虑安全、舒适、省时等因索,电梯的加速度a是随时间t变化的。已知电梯在t = 0时由静止开始上升,a - t图像如图2所示。电梯总质最m = 2.0× kg。忽略一切阻力,重力加速度g取10m/s2。 (1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2; (2)类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v - t图像求位移的方法。请你借鉴此方法,对比加速度的和速度的定义,根据图2所示a - t图像,求电梯在第1s内的速度改变量△v1和第2s末的速率v2; (3)求电梯以最大速率上升时,拉力做功的功率p:再求在0~11s时间内,拉力和重力对电梯所做的总功W。
水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R。在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,-l)和(0,0)点。已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动:B平行于x轴朝x轴正向匀速运动。在两车此后运动的过程中,标记R在某时刻通过点(l, l)。假定橡皮筋的伸长是均匀的,求B运动速度的大小。
质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数=0.2,g取10m/s²,求: (1)物块在力F作用过程发生位移的大小; (2)撤去力F后物块继续滑动的时间t。
一客运列车匀速行驶,其车轮在轨道间的接缝处会产生周期性的撞击。坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0 s。在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,火车恰好从静止开始以恒定加速度沿客车行进方向运动。该旅客在此后的20.0 s内,看到恰好有30节货车车厢被他连续超过。已知每根轨道的长度为25.0 m,每节货车车厢的长度为16.0 m,货车车厢间距忽略不计。求(1)客车运行的速度大小;(2)货车运行加速度的大小。