某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移x1=3m,着地时由于存在能量损失,着地后速度变为v=4m/s,并以此为初速沿水平地面滑行x2=8m后停止于C点.已知人与滑板的总质量m=60kg,g=10m/s2。(空气阻力忽略不计) 。求(1) 人与滑板离开平台时的水平初速度;(2) 人与滑板在水平地面滑行时受到的平均阻力大小。
航天飞机,可将物资运送到空间站,也可维修空间站出现的故障。(1)若已知地球半径为R,地球表面重力加速度为g,某次维修作业中,与空间站对接的航天飞机的速度计显示飞机的速度为v,则该空间站轨道半径R′为多大?(2)为完成某种空间探测任务,在空间站上发射的探测器通过向后喷气而获得反冲力使其启动。已知探测器的质量为M,每秒钟喷出的气体质量为m,为了简化问题,设喷射时探测器对气体做功的功率恒为P,在不长的时间 内探测器的质量变化较小,可以忽略不计。求喷气t秒后探测器获得的动能是多少?
在建筑工地上,我们常常看到工人用重锤将柱桩打入地下的情景。对此,我们可以建立这样一个力学模型:重锤的质量为m,从距桩顶高H处自由下落,柱桩的质量为M,重锤打击柱桩后不反弹且打击时间极短。柱桩受到地面的阻力恒为f,空气阻力忽略不计。利用这一模型,计算重锤一次打击柱桩时桩进入地下的深度h。一位同学这样解:设柱桩进入地面的深度为h,对全程运用动能定理,得: 可解得:h=……你认为该同学的解法是否正确?如果正确,请求出结果;如果不正确,请说明理由,并列式求出正确的结果。
如图所示,水平地面上方分布着水平向右的匀强电场,一“L”形的光滑绝缘硬质管竖直固定在匀强电场中,管的水平部分长L1=0.2m,离水平地面的高度为h=5.0m,竖直部分长为L2=0.1m,一带正电的小球从管的上端口A由静止释放,小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球受到的电场力大小为重力的一半,空气阻力忽略不计。求:(g=10m/s2)(1)小球运动到管口B时的速度大小;(2)小球着地点与管的下端口B的水平距离。
一质量为M=4kg、长为L=3m的木板,在水平向右F=8N的拉力作用下,以ν0=2m/s的速度沿水平面向右匀速运动。某时刻将质量为m=1kg的铁块(看成质点)轻轻地放在木板的最右端,如图.不计铁块与木板间的摩擦。若保持水平拉力不变,请通过计算说明小铁块能否离开木板?若能,进一步求出经过多长时间离开木板?
设长为L的正确方形线框的电阻为R,将以恒定速度匀速穿过有界匀强磁场,磁场的磁感应强度为B,v的方向垂直于B,也垂直于磁场边界,磁场范围的宽度为d,如图所示,则,(1)若L<d,求线框穿过磁场安培力所做的功;(2)若L>d,求线框穿过磁场安培力所做的功。