普朗克常量h=6.63×10-34 J·s,铝的逸出功W0=6.72×10-19 J,现用波长λ=200 nm的光照射铝的表面(结果保留三位有效数字).①求光电子的最大初动能;②若射出的一个具有最大初动能的光电子正对一个距离足够远且静止的电子运动,求在此运动过程中两电子电势能增加的最大值(除两电子间的相互作用以外的力均不计)。
如图,为某种透明材料做成的三棱镜横截面,其形状是边长为a的等边三角形,现用一束宽度为a的单色平行光束,以垂直于BC面的方向正好入射到该三棱镜的AB及AC面上,结果所有从AB、AC面入射的光线进入后恰好全部直接到达BC面.试求: (i)该材料对此平行光束的折射率; (ii)这些到达BC面的光线从BC面折射而出后,如果照射到一块平行于BC面的屏上形成光斑,则当屏到BC面的距离d满足什么条件时,此光斑分为两块?
(9分)如图所示,绝热气缸封闭一定质量的理想气体,被重量为G的绝热活塞分成体积相等的M、N上下两部分,气缸内壁光滑,活塞可在气缸内自由滑动。设活塞的面积为S,两部分的气体的温度均为T0,M部分的气体压强为p0,现把M、N两部分倒置,仍要使两部分体积相等,需要把M的温度加热到多大?
(19分)如图甲所示,表面绝缘、倾角q=30°的斜面固定在水平地面上,斜面的顶端固定有弹性挡板,挡板垂直于斜面,并与斜面底边平行。斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上,磁场上边界到挡板的距离s=0.55m。一个质量m=0.10kg、总电阻R=0.25W的单匝矩形闭合金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m。从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,并与挡板发生碰撞,碰撞过程的时间可忽略不计,且没有机械能损失。线框向上运动过程中速度与时间的关系如图乙所示。已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数m=/3,重力加速度g取10 m/s2。(1)求线框受到的拉力F的大小;(2)求匀强磁场的磁感应强度B的大小;(3)已知线框向下运动通过磁场区域过程中的速度v随位移x的变化规律满足v=v0-(式中v0为线框向下运动ab边刚进入磁场时的速度大小,x为线框ab边进入磁场后对磁场上边界的位移大小),求线框在斜面上运动的整个过程中产生的焦耳热Q。
(13分)如图所示,M是水平放置的半径足够大的圆盘,可绕过其圆心的竖直轴OO’匀速转动,在圆心O正上方h处有一个正在间断滴水的容器,每当一滴水落在盘面时恰好下一滴水离开滴口。某次一滴水离开滴口时,容器恰好开始水平向右做速度为v的匀速直线运动,将此滴水记作第一滴水。不计空气阻力,重力加速度为g。求:(1)相邻两滴水下落的时间间隔;(2)要使每一滴水在盘面上的落点都在一条直线上,求圆盘转动的角速度。(3)第二滴和第三滴水在盘面上落点之间的距离最大可为多少?
如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y轴之间有沿y轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。现有一质量为m、电荷量为e的电子,从虚线MN上的P点,以平行于x轴正方向的初速度v0射人电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成30°角,此后,电子做匀速直线运动,进人磁场并从圆形有界磁场边界上Q点(l/6,-l)射出,速度沿x轴负方向。不计电子重力。求:(1)匀强电场的电场强度E的大小?(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?(3)圆形有界匀强磁场区域的最小面积S是多大?