(15分)如图所示,质量M=10kg、上表面光滑的足够长木板在F=50N的水平拉力作用下以v0=5m/s初速度沿水平地面向右匀速运动,现有足够多的小铁块,它们质量均为m=1kg,将一铁块无初速地放在木板最右端,当木板运动了L=1m时,又无初速地在木板最右端放上第二个铁块,只要木板运动了L就在木板最右端无初速地放一铁块。求:(g=10m/s2)⑴第一个铁块放上后,木板运动1m时,木板的速度多大?⑵最终能有几个铁块留在木板上?⑶最后一个铁块与木板右端距离多大?
已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响。 (1)推到第一宇宙速度v1的表达式; (2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T。
在起重机将质量m=5×103 kg的重物竖直吊起的过程中,重物由静止开始向上作匀加速直线运动,加速度a="0.2" m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做vm="1.0" m/s的匀速运动。取g="10" m/s2,不计额外功。求: (1)起重机允许输出的最大功率。 (2)重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率。
游乐场内有一种叫“空中飞椅”的游乐项目,示意图如图16所示,在半径为r=4m的水平转盘的边缘固定着N=10条长为L=10m的钢绳,纲绳的另一端连接着座椅(图中只画出2个),转盘在电动机带动下可绕穿过其中心的竖直轴OO′ 转动。设在每个座椅内坐着质量相同的人,可将人和座椅看成是一个质点,人和座椅的质量为m=60kg,已知重力加速度为g=10m/s2,不计钢绳的重力及空气的阻力。当转盘以某一角速度w匀速转动时,座椅从静止开始随着转盘的转动而升高,经过一段时间后达到稳定状态,此时钢绳与转轴在同一竖直平面内,与竖直方向的夹角为=37°。求 (1)稳定时钢绳对座椅的拉力F的大小及转盘转动的角速度ω; (2)每个座椅从静止开始到随转盘稳定转动的过程中,绳子的拉力对座椅做的功; (3)如果带动转盘的电动机输出机械功率的效率为80%,转盘因自身转动及克服各种摩擦损失的机械功率为20%,求从座椅开始运动到随转盘稳定转动的过程中,电动机消耗的电能。
如图所示,竖直放置的半圆形绝缘光滑轨道半径R=40cm,下端与绝缘光滑的水平面平滑连接,整个装置处于方向竖直向下,大小为E=103V/m的匀强电场中,一质量为m=10g、带电量为q=+10-4C的小物块(可视为质点),从水平面上的A点以初速度v0水平向左运动,沿半圆形轨道恰好能通过最高点C,取g=10m/s2,试求: (1)小物块从C点抛出后落地点与B点间的水平距离; (2)v0的大小和过B点时轨道对小物块的支持力大小;