为满足不同列车间车厢进行重新组合的需要,通常需要将相关的列车通过“驼峰”送入编组场后进行重组(如图所示),重组后的车厢同一组的分布在同一轨道上,但需要挂接在一起。现有一列火车共有 n节车厢,需要在编好组的“驼峰”左侧逐一撞接在一起。已知各车厢之间间隙均为s0,每节车厢的质量都相等,现有质量与车厢质量相等、且没有动力驱动的机车经过“驼峰”以速度v0向第一节车厢运动,碰撞后通过“詹天佑挂钩”连接在一起,再共同去撞击第二节车厢,直到 n 节全部挂好。不计车厢在挂接中所受到的阻力及碰撞过程所需的时间,求:
(1)这列火车的挂接结束时速度的大小;
(2)机车带动第一节车厢完成整个撞接过程所经历的时间。
(3)这列火车完成所有车厢挂接后,机车立即开启动力驱动,功率恒为P,在行驶中的阻力f恒定,经历时间t达到最大速度,求机车此过程的位移。