如图所示,固定于水平桌面上足够长的两平行光滑导轨PQ、MN,其电阻不计,间距d=0.5m,P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B0=0.2T的匀强磁场中,两金属棒L1、L2平行地搁在导轨上,其电阻均为r=0.1Ω,质量分别为M1=0.3kg和M2=0.5kg。固定棒L1,使L2在水平恒力F=0.8N的作用下,由静止开始运动。试求: (1) 当电压表读数为U=0.2V时,棒L2的加速度为多大;(2)棒L2能达到的最大速度vm.
如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线的夹角θ=30°,一条长为l的绳,一端固定在圆锥体的顶点O,另一端系一个质量为m的小球(视作质点),小球以速率v绕圆锥体的轴线做水平匀速圆周运动,则 (1)当v1=时,绳对小球的拉力多大? (2)当v2=时,绳对小球的拉力多大?
在民航业内,一直有“黑色10分钟”的说法,即从全球已发生的飞机事故统计数据来看,大多数的航班事故发生在飞机起飞阶段的3分钟和着陆阶段的7分钟。飞机安全事故虽然可怕,但只要沉着冷静,充分利用逃生设备,逃生成功概率相当高,飞机失事后的90秒内是逃生的黄金时间。如图为飞机逃生用的充气滑梯,滑梯可视为理想斜面,已知斜面长L=8m,斜面倾斜角θ=37°,人下滑时与充气滑梯间动摩擦因素为=0.5。不计空气阻力,g=10m/s2,Sin37°=0.6,cos37°=0.8, 求: (1)旅客从静止开始由滑梯顶端滑到底端逃生,需要多长时间? (2)一旅客若以V0=4.0m/s的初速度抱头从舱门处水平逃生,当他落到充气滑梯上后没有反弹,由于有能量损失,结果他以v=4.0m/s的速度开始沿着滑梯加速下滑。该旅客以这种方式逃生与(1)问中逃生方式相比,节约了多长时间?
(14分)如图(甲)所示,水平放置的平行金属板A、B,两板的中央各有一小孔O1、O2,板间距离为d,开关S接1.当t=0时,在a、b两端加上如图(乙)所示的电压,同时在c、d两端加上如图(丙)所示的电压.此时,一质量为m的带负电微粒P恰好静止于两孔连线的中点处(P、O1、O2在同一竖直线上).重力加速度为g,不计空气阻力. (1)若在时刻将开关S从1扳到2,当时,求微粒P的加速度大小和方向; (2)若要使微粒P以最大的动能从A板中的O1小孔射出,问在到t=T之间的哪个时刻,把开关S从1扳到2,的周期T至少为多少?
如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C(重力不计),从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30º,并接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d=17.3cm.(注意:计算中取1.73)求: (1)带电微粒进入偏转电场时的速率; (2)偏转电场中两金属板间的电压U2; (3)为使带电微粒在磁场中的运动时间最长,B的取值满足怎样的条件?
如图所示,甲带电体固定在绝缘水平面上的O点.另一个电荷量为+q、质量为m的带电体乙,从P点由静止释放,经L运动到Q点时达到最大速度.已知乙与水平面的动摩擦因数为μ,静电力常量为k. 求: (1)Q处电场强度的大小; (2)P、Q两点电势差