如图21所示,一根长0.1m的细线,一端系着一个质量为0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上作匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线的拉力比开始时大40N,求: (1)线断开前的瞬间,线的拉力大小。(2)线断开的瞬间,小球运动的线速度。(3)如果小球离开桌面时,速度方向与桌边的夹角为,桌面高出地面0.8m,求小球飞出后的落地点距桌边的水平距离。
如图所示,在竖直平面内,粗糙的斜面轨道AB的下端与光滑的圆弧轨道BCD相切于B, C是最低点,圆心角∠BOC=37°,D与圆心O等高,圆弧轨道半径R=1.0m,现有一个质量为m=0.2kg可视为质点的小物体,从D点的正上方E点处自由下落,DE距离h=1.6m,物体与斜面AB之间的动摩擦因数μ=0.5。取sin37o=0.6,cos37o=0.8, g=10m/s2。求:⑴物体第一次通过C点时轨道对物体的支持力FN的大小; ⑵要使物体不从斜面顶端飞出,斜面的长度LAB至少要多长;⑶若斜面已经满足⑵要求,物体从E点开始下落,直至最后在光滑圆弧轨道做周期性运动,在此过程中系统因摩擦所产生的热量Q的大小。
如图所示,等腰直角三角形ABC区域内有磁感应强度大小为B,方向垂直纸面匈里的匀强磁场,AB边水平。磁场下方有一方向水平向右的匀强电场。现有一质量为m电量为q的负离子(重力不计),以速度v0沿图中虚线垂直电场且正对三角形ABC的顶点C射入,穿过电场区域后,负离子从AB边进入磁场,又从AB边射出。已知AB=,电场宽度L=。求:(1)负离子在AB边上入射点与出射点的距离;(2)保持电场宽度L不变,调整电场上边界与磁场边界AB间的距离及电场强度的大小,使负离子在磁场中运动的时间最长,则此时电场强度E多大?
一辆总质量为1500kg的汽车,由静止开始沿平直公路以额定功率P=90kW启动,并保持额定功率行驶。汽车匀速运动过程中,突然发现前方有障碍物,立即以大小为5m/s2的加速度开始刹车,汽车最后停下来。整个过程中,汽车发生的位移是765m,刹车之前汽车受到的阻力恒为3000N。求: (1)汽车刹车过程位移的大小;(2)汽车保持额定功率运动的时间。
一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为s,那么v2—s图象如图所示,已知匀强磁场方向垂直斜面向上.试问:(1)根据v2—s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d(2)金属框从进入磁场到穿出磁场所用时间是多少?(3)匀强磁场的磁感应强度多大?
如图甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0m,NQ两端连接阻值R=3.0Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=300。一质量m=0.20kg,阻值r=0.50Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60kg的重物相连。细线与金属导轨平行。金属棒沿导轨向上滑行的速度v与时间t之间的关系如图乙所示,已知金属棒在0~0.3s内通过的电量是0.3~0.6s内通过电量的1/3,g=10m/s2,求:(1)0~0.3s内棒通过的位移;(2)金属棒在0~0.6s内产生的热量。