如图所示,位于竖直平面内的1/4 圆弧光滑轨道,半径为R,轨道的最低点B 的切线沿水平方向,轨道上端A 距水平地面高度为H.质量为m 的小球(可视为质点)从轨道最上端A 点由静止释放,经轨道最下端B 点水平飞出,最后落在水平地面上的C 点处,若空气阻力可忽略不计,重力加速度为g.求: (1)小球运动到B 点时,轨道对它的支持力; (2)小球落地点C 与B 点的水平距离x; (3)比值R/H 为多少时,小球落地点C 与B 点水平距离x 最远,及该最大水平距离.
航天飞机,可将物资运送到空间站,也可维修空间站出现的故障。(1)若已知地球半径为R,地球表面重力加速度为g,某次维修作业中,与空间站对接的航天飞机的速度计显示飞机的速度为v,则该空间站轨道半径R′为多大?(2)为完成某种空间探测任务,在空间站上发射的探测器通过向后喷气而获得反冲力使其启动。已知探测器的质量为M,每秒钟喷出的气体质量为m,为了简化问题,设喷射时探测器对气体做功的功率恒为P,在不长的时间 内探测器的质量变化较小,可以忽略不计。求喷气t秒后探测器获得的动能是多少?
在建筑工地上,我们常常看到工人用重锤将柱桩打入地下的情景。对此,我们可以建立这样一个力学模型:重锤的质量为m,从距桩顶高H处自由下落,柱桩的质量为M,重锤打击柱桩后不反弹且打击时间极短。柱桩受到地面的阻力恒为f,空气阻力忽略不计。利用这一模型,计算重锤一次打击柱桩时桩进入地下的深度h。一位同学这样解:设柱桩进入地面的深度为h,对全程运用动能定理,得: 可解得:h=……你认为该同学的解法是否正确?如果正确,请求出结果;如果不正确,请说明理由,并列式求出正确的结果。
如图所示,水平地面上方分布着水平向右的匀强电场,一“L”形的光滑绝缘硬质管竖直固定在匀强电场中,管的水平部分长L1=0.2m,离水平地面的高度为h=5.0m,竖直部分长为L2=0.1m,一带正电的小球从管的上端口A由静止释放,小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球受到的电场力大小为重力的一半,空气阻力忽略不计。求:(g=10m/s2)(1)小球运动到管口B时的速度大小;(2)小球着地点与管的下端口B的水平距离。
一质量为M=4kg、长为L=3m的木板,在水平向右F=8N的拉力作用下,以ν0=2m/s的速度沿水平面向右匀速运动。某时刻将质量为m=1kg的铁块(看成质点)轻轻地放在木板的最右端,如图.不计铁块与木板间的摩擦。若保持水平拉力不变,请通过计算说明小铁块能否离开木板?若能,进一步求出经过多长时间离开木板?
设长为L的正确方形线框的电阻为R,将以恒定速度匀速穿过有界匀强磁场,磁场的磁感应强度为B,v的方向垂直于B,也垂直于磁场边界,磁场范围的宽度为d,如图所示,则,(1)若L<d,求线框穿过磁场安培力所做的功;(2)若L>d,求线框穿过磁场安培力所做的功。