一个人在20m高的楼顶水平抛出一个小球,小球在空中沿水平方向运动20m后,落到水平地面上。不计空气阻力的作用,重力加速度g取10m/s2。求:(1)小球在空中运动的时间;(2)小球被抛出时的速度大小;(3)小球落地时的速度大小。
如图所示,楔形物块固定在水平地面上,其斜面的倾角θ=37°。一个质量m=0.50kg的小物块以v0=8.0m/s的初速度,沿斜面向上滑行一段距离速度减为零。已知小物块与斜面间的动摩擦因数μ=0.25,sin37°=0.60,cos37°=0.80,g取10m/s2。求:(1)小物块向上滑行过程中的加速度大小;(2)小物块向上滑行的时间;(3)小物块向上滑行过程中克服摩擦力所做的功。
如图所示,在xOy平面内存在I、II、III、IV四个场区,y轴右侧存在匀强磁场I,y轴左侧与虚线MN之间存在方向相反的两个匀强电场,II区电场方向竖直向下,III区电场方向竖直向上,P点是MN与x轴的交点。有一质量为m,带电荷量+q的带电粒子由原点O,以速度v0沿x轴正方向水平射入磁场I,已知匀强磁场I的磁感应强度垂直纸面向里,大小为B0,匀强电场II和匀强电场III的电场强度大小均为,如图所示,IV区的磁场垂直纸面向外,大小为,OP之间的距离为,已知粒子最后能回到O点。(1)带电粒子从O点飞出后,第一次回到x轴时的位置和时间;(2)根据题给条件画出粒子运动的轨迹;(3)带电粒子从O点飞出后到再次回到O点的时间。
如图1所示,两根足够长的平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B,金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g,现闭合开关S,将金属棒由静止释放。(1)判断金属棒ab中电流的方向;(2)若电阻箱R2接入电路的阻值为R2="2" R1,当金属棒下降高度为h时,速度为v,求此过程中定值电阻R1上产生的焦耳热Q1;(3)当B=0.40T,L=0.50m,37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系如图2所示。取g= 10m/s2,sin37°= 0.60,cos37°= 0.80。求定值电阻的阻值R1和金属棒的质量m。
如图所示为水上滑梯的简化模型:倾角θ=37°斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7m,BC长d=2m,端点C距水面的高度h=1m。质量m=50kg的运动员从滑道起点A点无初速地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.1。已知cos37°=0.8,sin37°=0.6,运动员在运动过程中可视为质点,g取10 m/s2。求:(1)运动员从A滑到C的过程中克服摩擦力所做的功W;(2)运动员到达C点时的速度大小υ;(3)保持水平滑道端点在同一竖直线上,调节水平滑道高度h和长度d到图中B′C′ 位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B′C′距水面的高度h′.
在某地的一平直路段的交通标志上明确标明:机动车辆的行驶速度不得超过60km/h。就在这一路段曾经发生过一起重大交通事故:一辆质量10000kg的卡车撞上一辆质量2000kg的汽车。事后交警测得卡车刹车与撞上小汽车的距离为22.5m,卡车撞上汽车后一起滑行的距离是12.5m,卡车和汽车与地面的动摩擦因数是0.4,根据事故现场录像观察事故发生前汽车是没有运动的。求卡车是否超速?(g=10m/s2)