如图所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。
如图12-1-9甲所示是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.设摆球向右方向运动为正方向.图乙所示是这个单摆的振动图象.根据图象回答:(取π2=10) (1)单摆振动的频率是多大? (2)开始时刻摆球在何位置? (3)若当地的重力加速度为10 m/s2,试求这个摆的摆长是多少?
如图12-1-8所示是某同学设计的测量物体质量的装置,其中P是光滑水平面,N是质量为M的带夹子的金属盒,金属盒两端分别连接轻质弹簧;Q是固定于盒子上的遮光片,利用它和光电计时器能测量金属盒振动时的频率.已知弹簧振子做简谐运动时的周期T=2π,其中m是振子的质量,k 是常数.当空盒振动时,测得振动频率为f1;把一物体夹在盒中,并使其振动时,测得频率为f2.你认为这套装置能测量物体的质量吗?如果不能,请说明理由;若能,请求出被测物体的质量.
如图12-1-6所示,一个光滑的圆弧形槽半径为R,放在水平地面上,圆弧所对的圆心角小于5°.AD的长为x,今有一小球m1以沿AD方向的初速度v从A点开始运动,要使小球m1可以与固定在D点的小球m2相碰撞,那么小球m1的速度v应满足什么条件?
有人利用安装在气球载人舱内的单摆来确定气球的高度.已知该单摆在海平面处的周期是T0.当气球停在某一高度时,测得该单摆周期为T.求该气球此时离海平面的高度h.(把地球看做质量均匀分布的半径为R的球体)
弹簧振子以O点为平衡位置在B、C两点之间做简谐运动,B、C相距20 cm.某时刻振子处于B点,经过0.5 s,振子首次到达C点,求: (1)振动的周期和频率; (2)振子在5 s内通过的路程及5 s末的位移大小; (3)振子在B点的加速度大小跟它距O点4 cm处P点的加速度大小的比值.