一卫星绕某行星做匀速圆周运动。已知行星表面的重力加速度为g行 ,行星的质量M与卫星的质量m之比,行星的半径R行与卫星的半径R卫之比,行星与卫星之间的距离r与行星的半径R行之比。设卫星表面的重力加速度为g卫 , 则在卫星表面有.......经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的三千六百分之一。上述结果是否正确?若正确,列式证明;若错误,求出正确结果。
汤姆孙测定电子比荷的实验装置如图甲所示。从阴极K发出的电子束经加速后,以相同速度沿水平中轴线射入极板D1、D2区域,射出后打在光屏上形成光点。在极板D1、D2区域内,若不加电场和磁场,电子将打在P1点;若只加偏转电压U,电子将打在P2点;若同时加上偏转电压U和一个方向垂直于纸面向外、磁感应强度大小为B的匀强磁场(图中未画出),电子又将打在P1点。已知极板长度为L,极板间距为d。忽略电子的重力及电子间的相互作用。 (1)求电子射人极板D1、D2区域时的速度大小; (2)打在P2点的电子,相当于从D1、D2中轴线的中点O’射出,如图乙中的O’ P2所示,已知试推导出电子比荷的表达式;(3)若两极板间只加题中所述的匀强磁场,电子在极板间的轨迹为一段圆弧,射出后打在P3点。测得圆弧半径为2L、P3与P1间距也为2L,求图乙中P1与P2点的间距a。
如图甲所示,MN、PQ是相距d=l.0m足够长的平行光滑金属导轨,导轨平面与水平面间的夹角为,导轨电阻不计,整个导轨处在方向垂直于导轨平面向上的匀强磁场中,金属棒ab垂直于导轨MN、PQ放置,且始终与导轨接触良好,已知金属棒ab的质量m=0.1kg、其接入电路的电阻,小灯泡电阻,重力加速度g取10m/s2。现断开开关S,棒ab由静止释放并开始计时,t=0.5s时刻闭合开关S,图乙为ab的速度随时间变化的图象。求:(1)金属棒ab开始下滑时的加速度大小、斜面倾角的正弦值;(2)磁感应强度B的大小。
如图所示,竖直平面内有光滑且不计电阻的两道金属导轨,宽都为L,上方安装有一个阻值R的定值电阻。两根质量都为m,电阻都为r,完全相同的金属杆靠在导轨上,金属杆与导轨等宽且与导轨接触良好,虚线下方的区域内存在匀强磁场,磁感应强度B。(1)将金属杆1固定在磁场边界下侧,金属杆2从磁场边界上方静止释放,进入磁场后恰作匀速运动,求金属杆2释放处离开磁场边界的距离h0;(2)将金属杆1固定在磁场边界下侧,金属杆2从磁场边界上方h(h<h0)高处静止释放,经过一段时间后再次匀速,此过程流过电阻R的电量为q,则此过程整个回路中产生了多少热量?(3)金属杆2从离开磁场边界h(h<h0)高处静止释放,在进入磁场的同时静止释放金属杆1,两金属杆运动了一段时间后都开始了匀速运动,试求出杆2匀速时的速度大小,并定性画出两杆在磁场中运动的v-t图象。(两个电动势分别为E1、E2不同的电源串联时,电路中总的电动势E=E1+E2)
如图所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E和E/2;Ⅱ区域内有垂直向外的水平匀强磁场,磁感应强度为B。一质量为m、带电量为q的带负电粒子(不计重力)从左边界O点正上方的M点以速度v0水平射入电场,经水平分界线OP上的A点与OP成60°角射入Ⅱ区域的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强电场中。求:(1)粒子在Ⅱ区域匀强磁场中运动的轨道半径;(2)O、M间的距离;(3)粒子从M点出发到第二次通过CD边界所经历的时间。
如图,在竖直平面内有一固定光滑轨道,其中AB是长为s=10m的水平直轨道,BCD是圆心为O、半径为R=10m的3/4圆弧轨道,两轨道相切于B点。在外力作用下,一小球从A点由静止开始做匀加速直线运动,到达B点时撤除外力。已知小球刚好能沿圆轨道经过最高点C,重力加速度为g=10m/s2。求:(1)小球在AB段运动的加速度的大小;(2)小球从D点运动到A点所用的时间。(结果可用根式表示)