(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.(2) 一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?
如图所示,在xOy坐标系中,x轴上N点到O点的距离是12cm,虚线NP与x轴负向的夹角是30°.第Ⅰ象限内NP的上方有匀强磁场,磁感应强度B=1T,第IV象限有匀强电场,方向沿y轴正向.一质量m=8×10-10kg.电荷量q=1×10-4C带正电粒子,从电场中M(12,-8)点由静止释放,经电场加速后从N点进入磁场,又从y轴上P点穿出磁场.不计粒子重力,取=3 求: (1)粒子在磁场中运动的速度v; (2)粒子在磁场中运动的时间t; (3)匀强电场的电场强度E.
在相互垂直的匀强电场和匀强磁场中,有一倾角为θ,足够长的光滑绝缘斜面,磁感应强度为B,方向垂直纸面向外,电场方向竖直向上。有一质量为m,带电荷量为+q的小球静止在斜面顶端,这时小球对斜面的正压力恰好为零,如图所示,若迅速把电场方向反转成竖直向下。 求:(1)小球能在斜面上连续滑行多远? (2)所用时间是多少?
如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹射中并且嵌入其中。已知物体B的质量为m,物体A的质量是物体B的质量的3/4,子弹的质量是物体B的质量的1/4 ①求弹簧压缩到最短时B的速度。 ②弹簧的最大弹性势能。
一半径为R的1/4球体放置在水平桌面上,球体由折射率为的透明材料制成。如图所示,现有一束平行于桌面的光线射到球体表面上,折射入球体后再从竖直表面射出,已知入射光线与桌面的距离为R/2,求出射角θ。
一定质量的理想气体从状态A变化到状态B,再变化到状态C,其状态变化过程的p-V图象如图所示.已知该气体在状态A时的温度为27℃,求: ①该气体在状态B、C时的温度分别是多少? ②该气体从状态A到状态C的过程中内能的变化量是多少? ③该气体从状态A到状态C的过程中是吸热还是放热?传递的热量是多少?