我国神州九号飞船在轨道半径为r圆形轨道上绕地球做匀速圆周运动,若已知引力常量G,地球质量为M,飞船的质量为m,则神州九号受到地球对它的万有引力为多大?其运行的速度多大?
如图所示电路,R3=12Ω,当滑动变阻器R1调到6Ω时,电源的总功率为P=63W,输出功率为P出=54W,电源的内电阻为r=1Ω。求电源电动势E和流过滑动变阻器R1的电流I1。
相距L="1.5" m的足够长金属导轨竖直放置,质量为m1=1kg的金属棒和质量为m2="0.27kg" 的金属棒cd均通过棒两端的套环水平地套在金属导轨上,如图(a)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方问竖直向下,两处磁场磁感应强度大小相同。棒光滑,cd棒与导轨间的动摩擦因数为,两棒总电阻为1.8Ω,导轨电阻不计。ab棒在方向竖直向上,大小按图(b)所示规律变化的外力F作用下,从静止开始,沿导轨匀加速运动,同时cd捧也由静止释放。(取10m/s2) (1)求出磁感应强度B的大小和ab棒加速度的大小;(2)已知在2s内外力F做功40J,求这一过程中两金属棒产生的总焦耳热;(3)判断cd棒将做怎样的运动,求出cd棒达到最大速度所需的时间,并在图(c)中定性画出cd棒所受摩擦力随时间变化的图像。
平面直角坐标系中,第1象限存在沿轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度大小为B。一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以速度垂直于轴射入电场,经轴上的N点与轴正方向成60º角射入磁场,最后从轴负半轴上的P点与轴正方向成60º角射出磁场,如图所示。不计粒子重力,求: (1)粒子在磁场中运动的轨道半径R; (2)粒子从M点运动到P点的总时间; (3)匀强电场的场强大小E。
一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h以内。问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?
“∟”形轻杆两边互相垂直、长度均为l,可绕过O点的水平轴在竖直平面内自由转动。两端各固定一个金属小球A、B;其中A球质量为m、带负电、电荷量为q(q > 0);B球不带电,质量为m。重力加速度为g 。现将“∟”形杆从OB位于水平位置由静止释放。已知sin37°=0.6,cos37°=0.8。求:(1)A、B两球的最大动能之和为多少?(2)若在空间加竖直向下的匀强电场,OB杆仍从原来位置释放后,能转过的最大角度为127°,则该电场的电场强度大小为多少?