面积S = 0.2m2、n = 100匝的圆形线圈,处在如图所示的磁场内(线圈右边的电路中没有磁场),磁感应强度随时间t变化的规律是B = 0.02t,R = 3Ω,线圈电阻r = 1Ω,求:通过R的电流大小
(16分)如图所示,内壁光滑的半径为R的圆形轨道,固定在竖直平面内,质量为m1小球静止在轨道最低点,另一质量为m2的小球(两小球均可视为质点)从内壁上与圆心O等高的位置由静止释放,到最低点时与m1发生弹性碰撞,求:(1)小球m2运动到最低点时的速度大小;(2)碰撞后,欲使m1能沿内壁运动到最高点,则m2/m1应满足什么条件?
横截面积分别为的汽缸A、B竖直放置,底部用细管连通,气缸A中有定位卡环。现用质量分别为="4.0" kg、="2.0" kg的活塞封闭一定质量的某种理想气体,当气体温度为27℃时,活塞A恰与定位卡环接触,此时封闭气体的体积为="300" mL,外界大气压强为=1.0×105 Pa。(g取10m/s2)(i)使气体温度缓慢升高到57℃时,求此时封闭气体的体积;(ii)保持气体的温度57℃不变,用力缓慢压活塞B,使封闭气体体积恢复到,此时封闭气体的压强多大?活塞A与定位卡环间的弹力多大?
电动机带动滚轮匀速转动,在滚轮的作用下,将金属杆从最底端A送往倾角θ=30°的足够长斜面上部.滚轮中心B与斜面底部A的距离为L=6.5m,当金属杆的下端运动到B处时,滚轮提起,与杆脱离接触.杆由于自身重力作用最终会返回斜面底部,与挡板相撞后,立即静止不动.此时滚轮再次压紧杆,又将金属杆从最底端送往斜面上部,如此周而复始.已知滚轮边缘线速度恒为v=4m/s,滚轮对杆的正压力FN=2×104N,滚轮与杆间的动摩擦因数为μ=0.35,杆的质量为m=1×103Kg,不计杆与斜面间的摩擦,取g=10m/s2。求:(1)在滚轮的作用下,杆加速上升的加速度;(2)杆加速上升至与滚轮速度相同时前进的距离;(3)每个周期中电动机对金属杆所做的功;(4)杆往复运动的周期.
图示为宇宙中一恒星系的示意图,A为该星系的一颗行星,它绕中央恒星O的运行轨道近似为圆.已知引力常量为G,天文学家观测得到A行星的运行轨道半径为R0,周期为T0.(l)中央恒星O的质量是多大?(2)经长期观测发现,A行星的实际运行轨道与理论轨道有少许偏差,并且每隔t0时间其运行轨道偏离理论轨道最大,天文学家认为出现这种现象的原因可能是A行星外侧还存在着一颗未知的行星B(假设其运行的圆轨道与A在同一平面内,且与A的绕行方向相同).根据上述现象和假设,试估算未知行星的运动周期和轨道半径.
如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场Ⅰ和Ⅱ,两电场的边界是边长为L的正方形(不计电子所受重力).(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置;(2)在电场Ⅰ区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置;(3)若将左侧电场Ⅱ整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场Ⅰ区域内由静止释放电子的所有位置。