物体在地面附近绕地球做匀速圆周运动的速度叫做第一宇宙速度,地球自转较慢可以忽略不计时,地表处的万有引力约等于重力,这些理论关系对于其它星体也成立。若已知某星球的质量为M、半径为R,在星球表面某一高度处自由下落一重物,经过t时间落到星表面,不计星球自转和空气阻力,引力常量为G。试求:(1)该星球的第一宇宙速度v;(2)物体自由下落的高度h。
如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外。一电量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2h处的 P2点进入磁场,并经过y轴上y=-2h处的P3点。不计重力。求:(1)电场强度的大小;(2)粒子到达P2时速度的大小和方向;(3)磁感应强度的大小。
如图所示,在磁感应强度B=0.2T的水平匀强磁场中,有一边长为L=10cm,匝数N=100匝,电阻r=1Ω的正方形线圈绕垂直于磁感线的轴匀速转动,转速r/s,有一电阻R=9Ω,通过电刷与两滑环接触,R两端接有一理想电压表,求:(1)若从线圈通过中性面时开始计时,写出电动势瞬时值表达式;(2)求从中性面开始转过T时的感应电动势与电压表的示数;(3在1分钟内外力驱动线圈转动所作的功;
如图所示,矩形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场(AA′、BB′、CC′、DD′为磁场边界,四者相互平行),磁感应强度大小均为B,矩形区域的长度足够长,磁场宽度及BB′与CC′之间的距离相同.某种带正电的粒子从AA′上的O1处以大小不同的速度沿与O1A成α=30°角进入磁场(如图所示,不计粒子所受重力),当粒子的速度小于某一值时,粒子在区域Ⅰ内的运动时间均为t0;当速度为v0时,粒子在区域Ⅰ内的运动时间为.求:(1)粒子的比荷;(2)磁场区域Ⅰ和Ⅱ的宽度d;(3)速度为v0的粒子从O1到DD′所用的时间.
如图所示装置的左半部分为速度选择器,相距为d的两块平行金属板分别连在电压可调的电源两极上(上板接正极),板间存在方向垂直纸面向里、磁感应强度为B0的匀强磁场;右半部分为一半径为R的半圆形磁场区域,内有垂直纸面向外、磁感应强度为B的匀强磁场.矩形abcd相切于半圆,小孔M、N连线延长线经过圆心O点且与ad垂直.一束质量为m、带电量为+q的离子(不计重力)以不同速率沿MN方向从M孔射入.(1)金属板间电压为U0时,求从N孔射出的离子的速度大小;(2)要使离子能打到ab上,求金属板间电压U的取值范围.
虚线MN下方有竖直向上的匀强电场,场强大小E=2×103V/m,MN上方有一竖直长为L=0.5m的轻质绝缘杆,杆的上下两端分别固定一带电小球A、B(可看成质点),质量均为m=0.01kg,A带电量为;B带电量,B到MN的距离h=0.05m。现将杆由静止释放(g取10m/s2),求:(1)小球B在匀强电场中,而A还未进入电场时,两小球的加速度大小。(2)从开始运动到A刚要进入匀强电场过程的时间。