如图所示,在轴上方有一竖直向下的匀强电场区域,电场强度为。轴下方分布有很多磁感应强度为的条形匀强磁场区域,其宽度均为为,相邻两磁场区域的间距为。现将一质量为、电荷量为的带正电的粒子(不计重力)从轴上的某处静止释放。(1)若粒子从坐标(0,)点由静止释放,要使它经过轴下方时,不会进入第二磁场区,应满足什么条件?(2)若粒子从坐标(0,)点由静止释放,求自释放到第二次过轴的时间。
如图所示,摩托车做腾跃特技表演,以初速度v0冲上高为h、顶部水平的高台,然后从高台水平飞出.若摩托车始终以额定功率P行驶,经时间t从坡底到达坡顶.已知人和车的总质量为m,各种阻力的影响可忽略不计。求人和车飞出的水平距离s.
如图所示,在一绝缘粗糙的水平桌面上,用一长为2L的绝缘轻杆连接两个完全相同、 质量均为m的可视为质点的小球A和B球带电量为+q, B球不带电.开始时轻杆的中垂 线与竖直虚线MP重合,虚线NQ与MP平行且相距4L.在MP、NQ间加水平向右、电场强 度为E的匀强电场,AB球恰能静止在粗糙桌面上。取最大静摩擦力等于滑动摩擦力。求:(1)A,B球与桌面间的动摩擦因数(2) 若A球带电量为+8q时,S球带电量为-8q,将AB球由开始位置从静止释放,求A 球运动到最右端时拒虚线NQ的距离d,及AB系统从开始运动到最终静止所运动的总路程s:(3) 若有质量为km、带电量为-k2q的C球,向右运动与B球正碰后粘合在一起,为 使A球刚好能到达虚线NQ的位置,问k取何值时,C与B碰撞前瞬间C球的速度最小? C球速度的最小值为多大?(各小球与桌面间的动摩擦因数都相同。)
如图所示,在直角坐标系xOy内,有一质量为m,电荷量为+q的粒子A从原点O沿y 轴正方向以初速度V0射出,粒子重力忽略不计,现要求该粒子能通过点P(a, -b),可通 过在粒子运动的空间范围内加适当的“场”来实现。(1) 若只在整个I、II象限内加垂直纸面向外的匀强磁场,使粒子A在磁场中作匀速 圆周运动,并能到达P点,求磁感应强度B的大小;(2) 若只在x轴上某点固定一带负电的点电荷 Q,使粒子A在Q产生的电场中作匀速圆周运动,并能到达P点,求点电荷Q的电量大小;(3) 若在整个I、II象限内加垂直纸面向外的 匀强磁场,并在第IV象限内加平行于x轴,沿x轴 正方向的匀强电场,也能使粒子A运动到达P点。如果此过程中粒子A在电、磁场中运动的时间相等,求磁感应强度B的大小和电场强度E的大小
如图所示,将质量m=1.24kg的圆环套在固定的水平直杆上,环的直径略大于杆的截面直径,环与杆的动摩擦因数μ=0.8。对环施加一位于竖直平面内斜向上与杆夹角θ=53°的恒定拉力F,使圆环从静止开始运动,第1s内前进了2m。(取g=10m/s²,sin53°=0.8,cos53°=0.6) 求:(1)圆环加速度a的大小; (2)拉力F的大小。
云室处在磁感应强度为B的匀强磁场中,一静止的质量为M的原子核在云室中发生一次衰变。粒子的质量为m,带电量为q,其运动轨迹在与磁场垂直的平面内。现测得粒子运动的迹道半径为R,试求在衰变过程中的质量亏损(涉及动量问题时,亏损的质量可忽略不计)。