在图甲中,直角坐标系0xy的1、3象限内有匀强磁场,第1象限内的磁感应强度大小为2B,第3象限内的磁感应强度大小为B,磁感应强度的方向均垂直于纸面向里.现将半径为l,圆心角为900的扇形导线框OPQ以角速度ω绕O点在纸面内沿逆时针匀速转动,导线框回路电阻为R.(1)求导线框中感应电流最大值.(2)在图乙中画出导线框匀速转动一周的时间内感应电流I随时间t变化的图象.(规定与图甲中线框的位置相对应的时刻为t=0)(3)求线框匀速转动一周产生的热量.
如图所示,倾角为的光滑斜面固定在水平面上,水平虚线L下方有垂直于斜面向下的匀强磁场,磁感应强度为B.正方形闭合金属线框边长为h,质量为m,电阻为R,放置于L上方一定距离处,保持线框底边ab与L平行并由静止释放,当ab边到达L时,线框速度为. ab边到达L下方距离d处时,线框速度也为,以下说法正确的是A. ab边刚进入磁场时,电流方向为a→bB.ab边刚进入磁场时,线框加速度沿斜面向下C.线框进入磁场过程中的最小速度小于D.线框进入磁场过程中产生的热量为mgdsin
汽车未装载货物时,某个轮胎内气体的体积为V0,压强为p0;装载货物后,该轮胎内气体的压强增加了Δp.若轮胎内气体视为理想气体,其质量、温度在装载货物前后均不变,求装载货物前后此轮胎内气体体积的变化量.
如图所示,在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负x轴成45°角。在x<0且OM的左侧空间存在着负x方向的匀强电场,场强E大小为32N/C;在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场,磁感应强度B大小为0.1T。一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电、磁场区域。已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求: (1)带电微粒第一次经过电、磁场边界OM的坐标; (2)带电微粒在磁场区域运动的总时间; (3)带电微粒最终离开电、磁场区域的位置坐标。
如图所示,固定在水平地面上的工件,由AB和BD两部分组成,其中AB部分为光滑的圆弧,AOB=37o,圆弧的半径R=0.5m;BD部分水平,长度为0.2m,C为BD的中点。现有一质量m=lkg,可视为质点的物块从A端由静止释放,恰好能运动到D点。(g=10m/s2,sin37o=0.6,cos37o=0.8)求:(1)物块运动到B点时,对工件的压力大小;(2)为使物块恰好运动到C点静止,可以在物块运动到B点后,对它施加一竖直向下的恒力F,F应为多大?(3)为使物块运动到C点时速度为零,也可先将BD部分以B为轴向上转动一锐角,应为多大?(假设物块经过B点时没有能量损失)
如图所示,在x-y-z三维坐标系的空间,在x轴上距离坐标原点x0=0.1m处,垂直于x轴放置一足够大的感光片。现有一带正电的微粒,所带电荷量q=1.6×10-16C,质量m=3.2×10-22kg,以初速度v0=1.0×104m/s从O点沿x轴正方向射入。不计微粒所受重力。(1)若在x≥0空间加一沿y轴正方向的匀强电场,电场强度大小E=1.0×104V/m,求带电微粒打在感光片上的点到x轴的距离;(2)若在该空间去掉电场,改加一沿y轴正方向的匀强磁场,磁感应强度大小B=0.1T,求带电微粒从O点运动到感光片的时间;(3)若在该空间同时加沿y轴正方向的匀强电场和匀强磁场,电场强度、磁场强度大小仍然分别是E=1.0×104V/m和B=0.1T,求带电微粒打在感光片上的位置坐标x、y、z分别为多少。