图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计。导轨所在平面与磁感应强度B为0.50T的匀强磁场垂直。质量m为6.0×10-3 ks、电阻为1.0Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0n的电阻R1。当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率户为0.27W,重力加速度取10m/s2,试求速率和滑动变阻器接人电路部分的阻值R2。
如图所示,水平传送带以恒定的速率v="4" m/s运送质量m="0.5" kg的工件(可视为质点).工件都是在位置A无初速度地放在传送带上的,且每当前一个工件在传送带上停止相对运动时,后一个工件即放到传送带上,今测得与传送带保持相对静止的相邻两工件之间的距离为2.0 m·g取10 m/s2.求:(1)某一工件刚放到A点时它与前一工件之间的距离x0;(2)工件与传送带之间的动摩擦因数;(3)由于传送工件而使带动传送带的电动机多消耗的功率.
如图所示,MN与PQ为在同一水平面内的平行光滑金属导轨,间距l=0.5m,电阻不计,在导轨左端接阻值为R=0.6Ω的电阻.整个金属导轨置于竖直向下的匀强磁场中,磁感应强度大小为B=2T.将质量m=1kg、电阻r=0.4Ω的金属杆ab垂直跨接在导轨上.金属杆ab在水平拉力F的作用下由静止开始向右做匀加速运动.开始时,水平拉力为F0=2N.(1)求金属杆ab的加速度大小;(2)求2s末回路中的电流大小;(3)已知开始2s内电阻R上产生的焦耳热为6.4J,求该2s内水平拉力F所做的功.
一质量的小物块以一定的初速度冲上一足够长的斜面,斜面的倾角.某同学利用传感器测出了小物块从一开始冲上斜面上滑过程中多个时刻的瞬时速度,并用计算机作出了小物块上滑过程的速度—时间图线,如图所示.(已知重力加速度,,)求:(1)小物块冲上斜面过程中加速度的大小;(2)小物块与斜面间的动摩擦因数;(3)小物块沿斜面上滑的过程中克服摩擦阻力做的功.
有一个竖直固定在地面的透气圆筒,筒中有一劲度系数为的轻弹簧,其下端固定,上端连接一质量为的薄滑块,圆筒内壁涂有一层新型智能材料─—ER流体,它对滑块的阻力可调。起初,滑块静止,ER流体对其阻力为0,弹簧的长度为L.现有一质量也为的物体从距地面2L处自由落下,与滑块碰撞后粘在一起向下运动。为保证滑块做匀减速运动,且下移距离为时速度减为0,ER流体对滑块的阻力须随滑块下移而变。试求(忽略空气阻力):(1)下落物体与滑块碰撞前的瞬间物体的速度;(2)下落物体与滑块碰撞过程中系统损失的机械能;(3)滑块下移距离d时ER流体对滑块阻力的大小。
如图所示,长度为l的轻绳上端固定在O点,下端系一质量为m的小球(小球的大小可以忽略)。(1)在水平拉力F的作用下,轻绳与竖直方向的夹角为α,小球保持静止。画出此时小球的受力图,并求力F的大小;(2)由图示位置无初速释放小球,求当小球通过最低点时的速度大小及轻绳对小球的拉力。不计空气阻力。