如图所示的平行板电容器板间距离d=1m,两板间的电压随时间变化图线如图(b),t =0时刻,有一荷质比为2×1010 C/Kg粒子以平行于极板的速度v0=2×105m/s射入电容器,开始向下偏转,t=3×10-5s时刻刚好从极板右侧面射出电场,带电粒子的重力不计。求:(1) 平行板电容器的板长;(2)定性画出粒子的运动轨迹图;(3)粒子射出电容器时偏转的角度(用反函数表示)
如图所示,在以坐标原点O为圆心,半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射人,带电粒子恰好做匀速直线运动,经t0时间从P点射出。(1)电场强度的大小和方向。(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经t0/2 时间恰从半圆形区域的边界射出,求粒子运动加速度大小。(3)若仅撤去电场,带电粒子仍从O点射入但速度为原来的4倍,求粒子在磁场中运动的时间。
如图所示,金属条的左侧有垂直纸面向里的磁感应强度为B、面积足够大的匀强磁场.在金属条正上方,与A点相距上方l处有一涂有荧光材料的金属小球P(半径可忽略).一强光束照射在金属条的A处,可以使A处向各个方向逸出不同速度的电子,小球P因受到电子的冲击而发出荧光.已知电子的质量为m、电荷量为e. (1)从A点垂直金属条向左垂直射入磁场的电子中,能击中小球P的电子的速度是多大?(2) 若A点射出的、速度沿纸面斜向下方,且与金属条成θ角的电子能击中小球P,请导出其速率v与θ的关系式,并在图中画出其轨迹.
质量m =" 2.0×10" -4kg、电荷量q = 1.0×10-6C的带正电微粒静止在空间范围足够大的匀强电场中。求:(取g = 10m/s2)⑴ 匀强电场的电场强度E1的大小和方向;⑵ 在t = 0时刻,电场强度大小增加到E2 = 4.0×103N/C,方向不变,求:微粒在t = 0.20s的速度大小;⑶ 在⑵的情况中,求t=0.20s时间内带电微粒的电势能变化。
在图示的电路中,电源的内电阻r = 0.6Ω。电阻R1 = 4Ω,R3 = 6Ω,闭合开关后电源消耗的总功率为40W,输出功率为37.6W。求:⑴ 电源电动势E;⑵ 电阻R2的阻值。
如图甲是质谱仪的工作原理示意图。图中的A容器中的正离子从狭缝S1以很小的速度进入电压为U的加速电场区(初速度不计)加速后,再通过狭缝S2从小孔G垂直于MN射入偏转磁场,该偏转磁场是以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁感应强度为B,离子最终到达MN上的H点(图中未画出),测得G、H间的距离为d,粒子的重力可忽略不计。试求:
(1)该粒子的比荷(2)若偏转磁场为半径为的圆形区域,且与MN相切于G点,如图乙所示,其它条件不变,仍保证上述粒子从G点垂直于MN进入偏转磁场,最终仍然到达MN上的H点,则磁感应强度与B的比为多少?