如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着方向沿y轴负方向的匀强电场,初速度为零、带电荷量为+q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,经磁场偏转后过y轴上的P点且垂直y轴进入电场区域,在电场中偏转并击中x轴上的C点.已知OA=OC=d.求电场强度E和磁感应强度B的大小(粒子的重力不计).
如图所示,在坐标原点O处,能向四周均匀发射速度大小相等、方向都平行于纸面的带正电粒子。在O点右侧有一半径为R的圆形薄板,薄板中心O′位于x轴上,且与x轴垂直放置,薄板的两端M、N与原点O正好构成等腰直角三角形。已知带电粒子的质量为m,带电量为q,速率为v,重力不计。(1)要使y轴右侧所有运动的粒子都能打到薄板MN上,可在y轴右侧加一平行于x轴的匀强电场,则场强的最小值E0为多大?在电场强度为E0时,打到板上的粒子动能为多大?(2)要使薄板右侧的MN连线上都有粒子打到,可在整个空间加一方向垂直纸面向里的匀强磁场,则磁场的磁感应强度不能超过多少(用m、v、q、R表示)?若满足此条件,从O点发射出的所有带电粒子中有几分之几能打在板的左边?
如图所示,一个可视为质点的物块,质量为m=2 kg,从光滑四分之一圆弧轨道顶端由静止滑下,到达底端时恰好进入与圆弧轨道底端相切的水平传送带,传送带由一电动机驱动着匀速向左转动,速度大小为u=3 m/s。已知圆弧轨道半径R=0.8 m,皮带轮的半径r=0.2m,物块与传送带间的动摩擦因数为μ=0.1,两皮带轮之间的距离为L=6m,重力加速度g=10m/s2。求:(1)皮带轮转动的角速度多大?(2)物块滑到圆弧轨道底端时对轨道的作用力;(3)物块将从传送带的哪一端离开传送带?物块在传送带上克服摩擦力所做的功为多大?
如图所示,一质量m1=0.45kg的平顶小车静止在光滑的水平轨道上。车顶右端放一质量m2=0.2kg的小物体,小物体可视为质点。现有一质量m0=0.05kg的子弹以水平速度v0=100m/s射中小车左端,并留在车中,最终小物块以5m/s的速度与小车脱离。子弹与车相互作用时间很短。g取10m/s2。求:①子弹刚刚射入小车时,小车的速度大小。②小物块脱离小车时,小车的速度多大。
如图乙所示,MN是一条通过透明球体球心的直线.在真空中波长为λ0=564nm的单色细光束AB平行于MN射向球体,B为入射点,若出射光线CD与MN的交点P到球心O的距离是球半径的倍,且与MN所成的角α=30°.求:透明体的折射率;
一列简谐横波沿x轴正方向传播,在t=0时刻的波形如图甲所示,已知在t=1.1s时刻,质点P出现第三次波峰,求质点Q第一次出现波峰的时间。