在火星表面上,做自由落体运动的物体在开始1.0s内下落S1=4.0 m。求: (1)该火星表面的重力加速度g=? (2)该物体从开始落下S2=36 m时的速度v2=?(3)该物体在第三个2.0s内的平均速度v=?(计算结果数值均保留两位有效数字)
如图,宽度的光滑金属框架固定板个与水平面内,并处在磁感应强度大小,方向竖直向下的匀强磁场中,框架的电阻非均匀分布,将质量,电阻可忽略的金属棒放置在框架上,并且框架接触良好,以为坐标原点,方向为x轴正方向建立坐标,金属棒从处以的初速度,沿轴负方向做的匀减速直线运动,运动中金属棒仅受安培力作用。求:
(1)金属棒运动0.5,框架产生的焦耳热; (2)框架中部分的电阻随金属棒的位置变化的函数关系; (3)为求金属棒沿轴负方向运动0.4过程中通过的电量,某同学解法为:先算出经过0.4金属棒的运动距离,以及0.4 时回路内的电阻,然后代入=求解.指出该同学解法的错误之处,并用正确的方法解出结果
如图,和为两个光滑固定轨道,、、在同一水平面,、、在同一竖直线上,点距水平面的高度,点高度为,一滑块从点以初速度分别沿两轨道滑行到或处后水平抛出。
(1)求滑块落到水平面时,落点与点间的距离和
(2)为实现,应满足什么条件?
倾角,质量的粗糙斜面位于水平地面上。质量的木块置于斜顶端,从静止开始匀加速下滑,经到达底端,运动路程,在此过程中斜面保持静止(,,取)。求:
(1)地面对斜面的摩擦力大小与方向;
(2)地面对斜面的支持力大小
(3)通过计算证明木块在此过程中满足动能定理。
、如图所示,一个质量为M的木板,静止在光滑水平面上。质量为m的小滑块以水平速度v0冲上木板,滑块与木板间的动摩擦因数为μ,要使滑块不从木板上掉下来,求木板的长度至少为多长?(已知重力加速度为g)
如图所示,一个小物体沿光滑的1/4圆弧轨道的A点无初速滑下,圆弧的半径为R,当小物体滑至圆弧轨道的最低点B时。(已知重力加速度为g)求:(1)小物体滑至圆弧的最低点B时的速度大小。(2 )小物体滑至圆弧的最低点B时对圆弧的压力。