甲、乙两船在静水中航行的速度分别为V甲和V乙,两船从同一渡口向河对岸划去.已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,则甲、乙两船渡河所用时间之比t甲和t乙为多少?
如图所示,倾角=30的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8m、质量M= 3kg的薄木板,木板的最右端叠放一质量m=lkg的小物块,物块与木板间的动摩擦因数=.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=l0. (1)为使物块不滑离木板,求力F应满足的条件; (2)若F=37.5N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.
如图所示,倾角为的光滑斜面固定在水平面上,水平虚线L下方有垂直于斜面向下的匀强磁场,磁感应强度为B.正方形闭合金属线框边长为h,质量为m,电阻为R,放置于L上方一定距离处,保持线框底边ab与L平行并由静止释放,当ab边到达L时,线框速度为. ab边到达L下方距离d处时,线框速度也为,以下说法正确的是 A. ab边刚进入磁场时,电流方向为a→b B.ab边刚进入磁场时,线框加速度沿斜面向下 C.线框进入磁场过程中的最小速度小于 D.线框进入磁场过程中产生的热量为mgdsin
汽车未装载货物时,某个轮胎内气体的体积为V0,压强为p0;装载货物后,该轮胎内气体的压强增加了Δp.若轮胎内气体视为理想气体,其质量、温度在装载货物前后均不变,求装载货物前后此轮胎内气体体积的变化量.
如图所示,在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负x轴成45°角。在x<0且OM的左侧空间存在着负x方向的匀强电场,场强E大小为32N/C;在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场,磁感应强度B大小为0.1T。一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电、磁场区域。已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求: (1)带电微粒第一次经过电、磁场边界OM的坐标; (2)带电微粒在磁场区域运动的总时间; (3)带电微粒最终离开电、磁场区域的位置坐标。
如图所示,固定在水平地面上的工件,由AB和BD两部分组成,其中AB部分为光滑的圆弧,AOB=37o,圆弧的半径R=0.5m;BD部分水平,长度为0.2m,C为BD的中点。现有一质量m=lkg,可视为质点的物块从A端由静止释放,恰好能运动到D点。(g=10m/s2,sin37o=0.6,cos37o=0.8)求: (1)物块运动到B点时,对工件的压力大小; (2)为使物块恰好运动到C点静止,可以在物块运动到B点后,对它施加一竖直向下的恒力F,F应为多大? (3)为使物块运动到C点时速度为零,也可先将BD部分以B为轴向上转动一锐角,应为多大?(假设物块经过B点时没有能量损失)