“嫦娥奔月”的过程可以简化为:“嫦娥一号”升空后,绕地球沿椭圆轨道运动,远地点A距地面高为h1,在远地点时的速度为v,然后经过变轨被月球捕获,再经多次变轨,最终在距离月球表面高为h2的轨道上绕月球做匀速圆周运动。(1)已知地球半径为R1.表面的重力加速度为g0,求“嫦娥一号”在远地点A处的加速度a;(2)已知月球的质量为M.半径为R2,引力常量为G,求“嫦娥一号”绕月球运动的周期T。
如图所示,第四象限内有互相正交的匀强电场E与匀强磁场B1,E的大小为1.5×103V/m,Bl大小为0.5T;第一象限的某个矩形区域内,有方向垂直纸面的匀强磁场B2,磁场的下边界与x轴重合。一质量m=1×10-14kg、电荷量q=2×l0-10C的带正电微粒以某一速度v沿与y轴正方向60°角从M点沿直线运动,经P点即进入处于第一象限内的磁场B2区域。一段时间后,小球经过y轴上的N点并与y轴正方向成60°角的方向飞出。M点的坐标为(0,-10),N点的坐标为(0,30),不计粒子重力,g取10m/s2。则求:微粒运动速度v的大小;匀强磁场B2的大小;B2磁场区域的最小面积。
如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里。一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1.8m,连线OA在竖直方向上,圆弧所对应的圆心角=37°。现有一质量m=3.6×10—4kg、电荷量q=9.0×10—4C的带正电的小球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道。小球离开圆弧轨道后在场中做匀速直线运动。不计空气阻力,sin37°=0.6,cos37°=0.8。求:匀强电场场强E的大小;小球刚射入圆弧轨道瞬间对轨道压力的大小。
一个半径r=0.10m的闭合导体圆环,圆环单位长度的电阻R0=1.0×10-2W×m-1。如图甲所示,圆环所在区域存在着匀强磁场,磁场方向垂直圆环所在平面向外,磁感应强度大小随时间变化情况如图乙所示。分别求在0~0.3 s和0.3 s~0.5s 时间内圆环中感应电动势的大小;分别求在0~0.3 s和0.3 s~0.5s 时间内圆环中感应电流的大小,并在图19丙中画出圆环中感应电流随时间变化的i-t图象(以线圈中逆时针电流为正,至少画出两个周期);求在0~10s内圆环中产生的焦耳热。
质量为m、总电阻为R的导线做成边长为l的正方形线框MNPQ,并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是光滑的,在导轨的下端有一宽度为l(即ab=l)、磁感应强度为B的有界匀强磁场,磁场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从静止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:线框通过磁场时的运动速度;开始释放时,MN与bb′之间的距离;线框在通过磁场的过程中所生的热。
如图所示,坐标空间中有场强为E的匀强电场和磁感应强度 为B的匀强磁场,y轴为两种场的分界面,图中虚线为磁场区域的右边界.现有一质量为m,电荷量为-q的带电粒子从电场中坐标位置(-L,0)处,以初速度v0沿x轴正方向开始运动,且已知.试求:要使带电粒子能穿越磁场区域而不再返回电场中,磁场的宽度d应满足的条件.