氢原子的核外电子质量为m,电量为e,在离核最近的轨道上运动,轨道半径为r1,求:(1)电子运动的动能.(2)电子绕核转动的频率.(3)电子绕核转动相当于环形电流的电流大小.
一列波沿x轴正方向传播的简谐波,在t=0时刻的波形图如图所示,已知这列波在P出现两次波峰的最短时间是0.4 s,求:(1)这列波的波速是多少?(2)再经过多少时间质点R才能第一次到达波峰? (3)这段时间里R通过的路程是多少?
如图,两根足够长的光滑固定平行金属导轨与水平面成θ角,导轨间距为d,两导体棒a和b与导轨垂直放置,两根导体棒的质量都为m、电阻都为R,回路中其余电阻不计。整个装置处于垂直于导轨平面向上的匀强磁场中,磁感应强度的大小为B。在t=0时刻使a沿导轨向上作速度为v的匀速运动,同时将b由静止释放,b经过一段时间后也作匀速运动。已知d=1m,m=0.5kg,R=0.5Ω,B=0.5T,θ=300,g取10m/s2,不计两导棒间的相互作用力。 (1)为使导体棒b能沿导轨向下运动,a的速度v不能超过多大?(2)若a在平行于导轨向上的力F作用下,以v1=2m/s的速度沿导轨向上运动,试导出F与b的速率v2的函数关系式并求出v2的最大值(3)在(2)中,当t=2s时,b的速度达到5.06m/s,2s内回路中产生的焦耳热为13.2J,求该2s内力F做的功(结果保留三位有效数字)。
如图甲所示,两块相同的平行金属板M、N正对着放置,相距为,板M、N上的小孔s1、s2与 O三点共线,s2O=R,连线s1O垂直于板M、N。以O为圆心、R为半径的圆形区域内存在磁感应强度大小为B、方向垂直纸面向里的匀强磁场。收集屏PQ上各点到O点的距离都为2R,两端点P、Q关于连线s1O对称,屏PQ所对的圆心角θ=120°。质量为m、电荷量为e的质子连续不断地经s1进入M、N间的电场,接着通过s2进入磁场。质子重力及质子间的相互作用均不计,质子在s1处的速度看作零。⑴若M、N间的电压UMN=+U时,求质子进入磁场时速度的大小。⑵若M、N间接入如图乙所示的随时间t变化的电压(式中,周期T已知),且在质子通过板间电场区域的极短时间内板间电场视为恒定,则质子在哪些时刻自s1处进入板间,穿出磁场后均能打到收集屏PQ上?⑶在上述⑵问的情形下,当M、N间的电压不同时,质子从s1处到打在收集屏PQ上经历的时间t会不同,求t的最大值。
如图,顶角为90°的光滑金属导轨MON固定在水平面上,导轨MO、NO的长度相等,M、N两点间的距离l=2m,整个装置处于磁感应强度大小B=0.5T、方向竖直向下的匀强磁场中。一根粗细均匀、单位长度电阻值r=0.5Ω/m的导体棒在垂直于棒的水平拉力作用下,从MN处以速度v=2m/s沿导轨向右匀速滑动,导体棒在运动过程中始终与导轨接触良好,不计导轨电阻,求:⑴导体棒刚开始运动时所受水平拉力F的大小;⑵开始运动后0.2s内通过导体棒的电荷量q;⑶导体棒通过整个金属导轨的过程中产生的焦耳热Q。
如图所示,倾角θ=300、长L=2.7m的斜面,底端与一个光滑的1/4圆弧平滑连接,圆弧底端切线水平。一个质量为m=1kg的质点从斜面最高点A沿斜面下滑,经过斜面底端B恰好到达圆弧最高点C,又从圆弧滑回,能上升到斜面上的D点,再由D点由斜面下滑沿圆弧上升,再滑回,这样往复运动,最后停在B点。已知质点与斜面间的动摩擦因数为μ=/6,g=10m/s2,假设质点经过斜面与圆弧平滑连接处速率不变。求:(1)质点第1次经过B点时对圆弧轨道的压力(2)质点从A到D的过程中重力势能的变化量(3)质点从开始到第8次经过B点的过程中在斜面上通过的路程