如图所示,在xoy平面直角坐标系的第一象限有射线OA,OA与x轴正方向夹角为30°,OA与y轴所夹区域内有沿y轴负方向的匀强电场,其他区域存在垂直于坐标平面向外的匀强磁场。有一质量为m、电量为q的带正电粒子,从y轴上的P点沿着x轴正方向以初速度v0射入电场,运动一段时间后经过Q点垂直于射线OA进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场。已知OP=h,不计粒子重力,求:(1)粒子经过Q点时的速度大小;(2)匀强电场电场强度的大小;(3)粒子从Q点运动到M点所用的时间。
一列横波在x轴上传播,在t1=0时刻波形如图中实线所示,t2=0.05 s时刻波形如图中虚线所示.求:(1)这列波的振幅和波长;(2)这列波的波速的大小和方向。
如下图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°由静止释放,小球到达最低点时与Q发生完全弹性正碰。已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,平板车与Q的质量关系是M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车P时,P和Q的速度大小? (2)平板车P的长度为多少?(3)小物块Q落地时与平板车P的水平距离为多少?
(18分)如图,电阻不计且足够长的U型金属框架放置在倾角θ=37°的绝缘斜面上,该装置处于垂直斜面向下的匀强磁场中,磁感应强度大小B=0.5T。质量m=0.1kg、电阻R=0.4Ω的导体棒ab垂直放在框架上,从静止开始沿框架无摩擦下滑,与框架接触良好。框架的质量M=0.2kg、宽度l=0.4m,框架与斜面间的动摩擦因数μ=0.6,与斜面间最大静摩擦力等于滑动摩擦力,g取10m/s2,sin37°=0.6,cos37°=0.8。(1)若框架固定,求导体棒的最大速度vm;(2)若框架固定,棒从静止开始下滑6.0m时速度v=4.0m/s,求此过程回路中产生的热量Q及流过ab棒的电量q;(3)若框架不固定,求当框架刚开始运动时棒的速度v2。
如图所示,两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可以不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度,在这一过程中( )
如图甲所示,水平面上固定一个倾角为θ的光滑足够长斜面,斜面顶端有一光滑的轻质定滑轮,跨过定滑轮的轻细绳两端分别连接物块A和B(可看作质点),开始A、B离水平地面的高度H=0.5m,A的质量m0=0.8kg。当B的质量m连续变化时,可以得到A的加速度变化图线如乙图所示,图中虚线为渐近线,设加速度沿斜面向上的方向为正方向,不计空气阻力,重力加速度为g取10m/s2。求:⑴斜面的倾角θ;⑵图乙中a0值;⑶若m=1.2kg,由静止同时释放A、B后,A上升离水平地面的最大高度(设B着地后不反弹)。