如图所示为阿特伍德机,一不可伸长的轻绳跨过轻质定滑轮,两端分别连接质量为M="0.6" kg和m="0.4" kg的重锤.已知M自A点由静止开始运动,经1.0 s运动到B点.求: (1)M下落的加速度;(2)当地的重力加速度.
一球从高出地面H米处由静止自由落下,忽略空气阻力,落至地面后并深入地下h米处停止,设球质量为m,求球在落入地面以下过程中受到的平均阻力。
如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角θ= 37°,A、C、D滑块的质量为mA= mC= mD= m =1 kg,B滑块的质量mB = 4 m=" 4" kg(各滑块均视为质点)。A、B间夹着质量可忽略的火药。K为处于原长的轻质弹簧,两端分别连接住B和C。现点燃火药(此时间极短且不会影响各物体的质量和各表面的光滑程度),此后,发现A与D相碰后粘在一起,接着沿斜面前进了L =" 0.8" m 时速度减为零,此后设法让它们不再滑下。已知滑块A、D与斜面间的动摩擦因数均为μ = 0.5,取g = 10 m/s2,sin37°= 0.6,cos37°= 0.8。求:(1)火药炸完瞬间A的速度vA;(2)滑块B、C和弹簧K构成的系统在相互作用过程中,弹簧的最大弹性势能Ep。(弹簧始终未超出弹性限度)。
一质量为M =" 0.8" kg的中空的、粗细均匀的、足够长的绝缘细管,其内表面粗糙、外表面光滑;有一质量为m =" 0.2" kg、电荷量为q =" 0.1" C的带正电小滑块以水平向右的速度进入管内,如图甲。细管置于光滑的水平地面上,细管的空间能让滑块顺利地滑进去,示意图如图乙。运动过程中滑块的电荷量保持不变。空间中存在垂直纸面向里的水平匀强磁场,磁感强度为B =" 1.0" T。(取水平向右为正方向,g =" 10" m/s2) (1)滑块以v0 = 10 m/s的初速度进入管内,则系统最终产生的内能为多少? (2)滑块最终的稳定速度vt取决于滑块进入细管时的初速度v0,请以滑块的初速度v0为横坐标、滑块最终稳定时的速度vt 为纵坐标,在丙图中画出滑块的vt—v0图象(只需画出v0的取值范围在0至60 m/s的图象)。
一辆长为l1 =" 14" m的客车沿平直公路以v1 =" 8" m/s的速度匀速向东行驶,一辆长为l2 =" 10" m的货车由静止开始以a =" 2" m/s2的加速度由东向西匀加速行驶,已知货车刚启动时两车前端相距s0 =" 240" m,当货车的速度达到v2 =" 24" m/s时即保持该速度匀速行驶,求两车错车所用的时间。
MN是一段半径为1m的光滑的1/4圆弧轨道,轨道上存在水平向右的匀强电场。轨道的右侧有一垂直纸面向内的匀强磁场,磁感应强度为B1=0.1T。现有一带电量为+1C质量为100g的带电小球从M点由静止开始自由下滑,恰能沿NP方向做直线运动,并进入右侧的复合场。(NP沿复合场的中心线)已知AB板间的电压为U=2V,板间距离d=2m,板的长度L=3m,若小球恰能从板的边沿飞出,NP沿复合场的中心线试求:(1)小球运动到N点时的速度v;(2)水平向右的匀强电场电场强度E;(3)复合场中的匀强磁场的磁感应强度B2。