如图4-3-11甲所示,竖直平面内的光滑轨道由直轨道AB和圆轨道BC组成,小球从轨道AB上高H处的某点由静止滑下,用力传感器测出小球经过圆轨道最高点C时对轨道的压力为F,并得到如图乙所示的压力F随高度H的变化关系图象.(小球在轨道连接处无机械能损失,g=10 m/s2)求:图4-3-11(1)小球从H=3R处滑下,它经过最低点B时的向心加速度的大小;(2)小球的质量和圆轨道的半径.
如图所示,光滑绝缘水平桌面上固定一绝缘挡板P,质量分别为和的小物块A和B(可视为质点)分别带有和的电荷量,两物块由绝缘的轻弹簧相连,一不可伸长的轻绳跨过定滑轮,一端与物块B 连接,另一端连接轻质小钩。整个装置处于正交的场强大小为E、方向水平向左的匀强电场和磁感应强度大小为B、方向水平向里的匀强磁场中。物块A,B开始时均静止,已知弹簧的劲度系数为K,不计一切摩擦及AB间的库仑力,物块A、B所带的电荷量不变,B不会碰到滑轮,物块A、B均不离开水平桌面。若在小钩上挂一质量为M的物块C并由静止释放,可使物块A对挡板P的压力为零,但不会离开P,则 (1)求物块C下落的最大距离; (2)求小物块C下落到最低点的过程中,小物块B的电势能的变化量、弹簧的弹性势能变化量; (3)若C的质量改为2M,求小物块A刚离开挡板P时小物块B的速度大小以及此时小物块B对水平桌面的压力.
在直角坐标xoy内,在第1象限的区域Ⅰ内存在垂直于纸面向外宽度为d的匀强磁场,区域Ⅱ内存在垂直于直面向里宽度为的匀强磁场;在第三象限存在沿Y轴正向的匀强电场,一质量为带电量为的带电粒子从电场中的坐标为(-2h,-h)点以速度水平向右射出,经过原点O处射入区域Ⅰ后垂直MN射入区域Ⅱ,(粒子的重力忽略不计)求: (1)区域Ⅰ内磁感应强度的大小; (2)若区域Ⅱ内磁感应强度的大小是的整数倍,当粒子再次回到MN时坐标可能值为多少?
如图所示,质量M=8kg的小车放在水平光滑的平面上,在小车左端加一水平推力F="8" N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m="2" kg的小物块,小物块与小车间的动摩擦因数=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端。取g="l0" m/s2.求: (1)小物块放后,小物块及小车的加速度各为多大? (2)小车的长度是多少?
如图8所示,MN为水平放置的光滑圆盘,半径为1.0m,其中心O处有一个小孔,穿过小孔的细绳两端各系一小球A和B,A、B两球的质量相等。圆盘上的小球A作匀速圆周运动。问: (1)当A球的轨道半径为0.20m时,它的角速度是多大才能维持B球静止?(6分) (2)若将前一问求得的角速度减半,怎样做才能使A作圆周运动时B球仍能保持静止?
如图所示,飞机离地面高度为H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20 m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g="10m/s2)"