普朗克常量h=6.63×10-34 J·s,铝的逸出功W0=6.72×10-19 J,现用波长λ=200 nm的光照射铝的表面(结果保留三位有效数字).(1)求光电子的最大初动能;(2)若射出的一个具有最大初动能的光电子正对一个原来静止的电子运动,求在此运动过程中两电子电势能增加的最大值(电子所受的重力不计).
一质量为m=40kg的小孩子站在电梯内的体重计上。电梯从t=0时刻由静止开始上升,在0到6s内体重计示数F的变化如图所示。试问:在这段时间内电梯上升的高度是多少?取重力加速度g=10m/s2。
一个质量为的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数。从开始,物体受到一个大小和方向呈周期性变化的水平力F作用,力F随时间的变化规律如图10所示。求83秒内物体的位移大小和力F对物体所做的功。取。注意:这种题应考虑是周期性问题
一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。
天空有近似等高的浓云层。为了测量云层的高度,在水平地面上与观测者的距离为d=3.0km处进行一次爆炸,观测者听到由空气直接传来的爆炸声和由云层反射来的爆炸声时间上相差Δt=6.0s。试估算云层下表面的高度。已知空气中的声速v=km/s。
原地起跳时,先屈腿下蹲,然后突然蹬地。从开始蹬地到离地是加速过程(视为匀加速),加速过程中重心上升的距离称为“加速距离”。离地后重心继续上升,在此过程中重心上升的最大距离称为“竖直高度”。现有下列数据:人原地上跳的“加速距离”d1=0.50m,“竖直高度”h1=1.0m;跳蚤原地上跳的“加速距离”d2=0.00080m,“竖直高度”h2=0.10m。假想人具有与跳蚤相等的起跳加速度,而“加速距离”仍为0.50m,则人上跳的“竖直高度”是多少?