如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好。求:(1)细线烧断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度。
(10分)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m、导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻,匀强磁场方向与导轨平面垂直.质量为0.2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25. (1)求金属棒沿导轨由静止开始下滑时的加速度大小. (2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小. (3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向(g=10m/s2,sin37°=0.6,cos37°=0.8)
如图所示,在绝缘水平面上,相距为的、两点处分别固定着两个等量正电荷,a、b是连线上两点,其中==,为连线中点。一质量为带电量为+的小滑块(可视为质点)以初动能从a点出发,沿直线向b点运动,其中小滑块第一次经过点时的动能为初动能的倍(>1),到达b点时动能恰好为零,小滑块最终停在点,求 (1)小滑块与水平面间的动摩擦因数; (2)两点间的电势差; (3)小滑块运动的总路程s.,
如图7—10所示,倾角为30°的直角三角形底边长为2L,底边处在水平位置,斜边为光滑绝缘导轨。现在底边中点O处固定一正电荷Q,让一个质量为m带正电的点电荷q从斜面顶端A沿斜边滑下,(整个运动过程中始终不脱离斜面)已测得它滑到斜边上的垂足D处时速度为v,加速度为a,方向沿斜面向下,试求该质点滑到斜边底端C点时的速度和加速度各为多大?
如图所示,绝缘细线一端固定于O点,另一端连接一带电荷量为q,质量为m的带正电小球,要使带电小球静止时细线与竖直方向成а角,可在空间加一匀强电场则当所加的匀强电场沿着什么方向时可使场强最小?最小的场强多大?这时细线中的张力多大?
扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆,其简化模型如图所示:I、II两处的条形匀强磁场区域的宽度分别为L1、L2,边界竖直,I区域的右边界和II区域的左边界相距L,磁感应强度大小分别为B1、B2,方向相反且垂直纸面。一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器的负极板处由静止释放,两极板间电压为U,粒子经电场加速后平行纸面射入I区域,射入时的速度方向与水平方向的夹角θ=30°。 (1)当L1=L,B1=B0时,粒子从I区域右边界射出时速度与水平方向的夹角也为30°,求B0及粒子在I区域中运动的时间t1; (2)若L2=L1=L,B2=B1=B0,求粒子在I区域中的最高点与II区域中的最低点之间的高度差h; (3)若L2=L1=L,B1=B0,为使粒子能返回I区域,求B2应满足的条件; (4)若L1≠L2,B1≠B2,且已保证粒子能从II区域的右边界射出,为使粒子从II区域右边界射出时速度与从I区域左边界射入时的方向总相同,求B1、B2、L1、L2之间应满足的关系式。