如图所示,一辆质量是m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车之间的动摩擦因数=0.4,开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车每一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?
如图所示,在冬奥会上,跳台滑雪运动员从滑道上的A点由静止滑下,经时间t0从跳台末端的O点沿水平方向飞出。O点又是斜坡OB的起点,A点与O点在竖直方向的高度差为h,斜坡OB的倾角为θ。运动员的质量为m,重力加速度为g。不计一切摩擦和空气阻力。求: ⑴从A点到O点的运动过程中,重力对运动员做功的平均功率; ⑵运动员在斜坡OB上的落点到O点的距离S; ⑶若运动员在空中飞行时处理好滑雪板和水平面的夹角,便可获得一定的竖直向上的升力。假设该升力为运动员全重的5﹪,求实际落点到O点的距离将比第⑵问求得的距离远百分之几?(保留三位有效数字)
如下图所示,相距为d、板间电压为U的平行金属板M、N间有垂直纸面向里、磁感应强度为B0的匀强磁场;在pOy区域内有垂直纸面向外、磁感应强度为B的匀强磁场;pOx区域为无场区.一正离子沿平行于金属板、垂直磁场射入两板间并做匀速直线运动,从H(0,a)点垂直y轴进入第Ⅰ象限. (1)求离子在平行金属板间的运动速度; (2)若离子经Op上某点离开磁场,最后垂直x轴离开第Ⅰ象限,求离子在第Ⅰ象限磁场区域的运动时间; (3)要使离子一定能打在x轴上,则离子的荷质比应满足什么条件?
如下图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°由静止释放,小球到达最低点时与Q的碰撞时间极短,且无机械能损失。已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,平板车与Q的质量关系是M:m=4:1,重力加速度为g。求: (1)小物块Q离开平板车P时,P和Q的速度大小? (2)平板车P的长度为多少? (3)小物块Q落地时与平板车P的水平距离为多少?
如图所示,两物块A、B置于光滑水平面上,质量分别为m和2m,一轻质弹簧两端分别固定在两物块上,开始时弹簧处于拉伸状态,用手固定两物块。现在先释放物块B,当物块B的速度大小为3v时,再释放物块A,此时弹簧仍处于拉伸状态;当物块A的速度大小为v时,弹簧刚好恢复原长。自始至终弹簧都未超出弹性限度。求: ①弹簧刚恢复原长时,物块B的速度大小; ②两物块相距最近时,弹簧的弹性势能大小(设弹簧处于原长时弹性势能为零)。
半圆柱玻璃体横截面如图所示。图中,O为玻璃截面的圆心,OP与水平直径垂直。一细激光束沿PB照射到半圆柱玻璃体上的B点,经半圆柱玻璃折射后,出射光线与OP平行。已知玻璃截面的圆半径为R,B到OP的距离为,OP长为。求玻璃体的折射率n。