液压千斤顶是利用密闭容器内的液体能够把液体所受到的压强行各个方向传递的原理制成的。图为一小型千斤顶的结构示意图。大活塞的直径D1=20cm,小活塞B的直径D2=5cm,手柄的长度OC=50cm,小活塞与手柄的连接点到转轴O的距离OD=10cm。现用此千斤顶使质量m=4×103kg的重物升高了h=10cm。g取10m/s2,求 (i)若此千斤顶的效率为80%,在这一过程中人做的功为多少? (ii)若此千斤顶的效率为100%,当重物上升时,人对手柄的作用力F至少要多大?
某学习小组为了研究影响带电粒子在磁场中偏转的因素,制作了一个自动控制装置,如图所示,滑片P可在R2上滑动,在以O为圆心,半径为R=10cm的圆形区域内,有一个方向垂直纸面向外的水平匀强磁场,磁感应强度大小为B=0.10T。竖直平行放置的两金属板A、K相距为d,连接在电路中,电源电动势E=91V,内阻r=1.0Ω,定值电阻R1=10Ω,滑动变阻器R2的最大阻值为80Ω,S1、S2为A、K板上的两个小孔,且S1、S2跟O在竖直极板的同一直线上,OS2=2R,另有一水平放置的足够长的荧光屏D,O点跟荧光屏D点之间的距离为H。比荷为2.0×105C/kg的离子流由S1进入电场后,通过S2向磁场中心射去,通过磁场后落到荧光屏D上。离子进入电场的初速度、重力、离子之间的作用力均可忽略不计。问:(1)判断离子的电性,并分段描述离子自S1到荧光屏D的运动情况?(2)如果离子恰好垂直打在荧光屏上的N点,电压表的示数多大?(3)电压表的最小示数是多少?要使离子打在荧光屏N点的右侧,可以采取哪些方法?
如图所示,有一个可视为质点的质量为m=1kg的小物块,从光滑平台上的A点以v0=1.8m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进人固定在竖直平面内的光滑圆弧轨道,最后小物块无碰撞地滑上紧靠轨道末端D点的足够长的水平传送带。已知传送带上表面与圆弧轨道末端切线相平,传送带沿顺时针方向匀速运行的速度为v=3m/s,小物块与传送带间的动摩擦因数μ= 0.5,圆弧轨道的半径为R=2m,C点和圆弧的圆心O点连线与竖直方向的夹角θ=530,不计空气阻力,重力加速度g=10m/s2,sin530="0." 8、cos530=0.6。求:(1)小物块到达圆弧轨道末端D点时对轨道的压力;(2)小物块从滑上传送带到第一次离开传送带的过程中产生的热量。
如图所示,平面直角坐标系xoy中,在第二象限内有竖直放置的两平行金属板,其中右板开有小孔;在第一象限内存在内、外半径分别为、R的半圆形区域,其圆心与小孔的连线与x轴平行,该区域内有磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里:在y<0区域内有电场强度为E的匀强电场,方向与x轴负方向的夹角为60°。一个质量为m,带电量为-q的粒子(不计重力),从左金属板由静止开始经过加速后,进入第一象限的匀强磁场。求:(1)若两金属板间的电压为U,粒子离开金属板进入磁场时的速度是多少?(2)若粒子在磁场中运动时,刚好不能进入的中心区域,此情形下粒子在磁场中运动的速度大小。(3)在(2)情形下,粒子运动到y<0的区域,它第一次在匀强电场中运动的时间。
能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本电中性的两极板中的一个极板移到另一个极板的过程. 在移动过程中克服电场力做功,电源的电能转化为电容器的电场能.实验表明:电容器两极间的电压与电容器所带电量如图所示.(1)对于直线运动,教科书中讲解了由v-t图像求位移的方法.请你借鉴此方法,根据图示的Q-U图像,若电容器电容为C,两极板间电压为U,证明:电容器所储存的电场能为.(2)如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为C的电容器.框架上一质量为m、长为L的金属棒平行于地面放置,离地面的高度为h.磁感应强度为B的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.求:a. 金属棒落地时的速度大小 b. 金属棒从静止释放到落到地面的时间
光滑圆轨道和两倾斜直轨道组成如图所示装置,其中直轨道bc粗糙,直轨道cd光滑,两轨道相接处为一很小的圆弧。质量为m=0.1kg的滑块(可视为质点)在圆轨道上做圆周运动,到达轨道最高点a时的速度大小为v=4m/s,当滑块运动到圆轨道与直轨道bc的相切处b时,脱离圆轨道开始沿倾斜直轨道bc滑行,到达轨道cd上的d点时速度为零。若滑块变换轨道瞬间的能量损失可忽略不计,已知圆轨道的半径为R=0.25m,直轨道bc的倾角θ=37o,其长度为L=26.25m,d点与水平地面间的高度差为h=0.2m,取重力加速度g=10m/s2,sin37°=0.6。求:(1)滑块在圆轨道最高点a时对轨道的压力大小;(2)滑块与直轨道bc问的动摩擦因数;