如图所示,一个质量m=0.2kg的小环系于轻质弹簧的一端,且套在光滑竖直的固定大圆环上,弹簧另一端固定于圆环的最高点A,环的半径R=0.5m,弹簧原长L0=0.5m,劲度系数k=4.8N/m,若小环从图示位置B点由静止开始滑到最低的C点,在C点弹簧的弹性势能为EP=0.6J,求:(1)小环在C处时速度(2)小环在C点受大圆环对小环的弹力
如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上。现有一滑块A从光滑曲面上离桌面h高处由静止开始下滑下,与滑块B发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出。已知求:(1)滑块A与滑块B碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能;(3)滑块C落地点与桌面边缘的水平距离。
如图所示,一个圆弧形光滑轨道ABC,放置在竖直平面内,轨道半径为R,在A 点与水平地面AD相接,地面与圆心O等高,MN是放在水平地面上长为3R、厚度不计的垫子,左端M正好位于A点。一个质量为m的小球从A处正上方某处由静止释放,不考虑空气阻力,若小球能从C点射出并打到垫子上,小球距离A点的高度在什么范围。
在水平地面上有一质量为2kg的物体,物体在水平拉力F的作用下由静止开始运动,10s后拉力大小减为F/3,该物体的运动速度随时间t的变化规律如图所示.求:(1)物体受到的拉力F的大小.(2)物体与地面之间的动摩擦因素.(g取10m/s2)
如图所示,轻杆BC的C点用光滑铰链与墙壁固定,杆的B点通过水平细绳AB使杆与竖直墙壁保持30°的夹角.若在B点悬挂一个定滑轮(不计重力),某人用它匀速地提起重物.已知重物的质量 m=30 kg,人的质量M=50kg,g取10 m/s2.试求:(1)此时地面对人的支持力的大小;(2)轻杆BC和绳AB所受力的大小.
如图所示,质量为2m的物体A经一轻质弹簧与地面上的质量为3m的物体B相连,弹簧的劲度系数为k, 一条不可伸长的轻绳绕过定滑轮,一端连物体A,另一端连一质量为m的物体C,物体A、B、C都处于静止状态.已知重力加速度为g,忽略一切摩擦.(1)求物体B对地面的压力;(2)把物体C的质量改为5m,这时,C缓慢下降,经过一段时间系统达到新的平衡状态,这时B仍没离开地面,且C只受重力和绳的拉力作用,求此过程中物体A上升的高度.