在平直铁轨上以60m/s速度行驶的动车组车箱内,乘客突然发现,悬挂在箱顶上的物体悬线向车前进方向偏离竖直方向θ=14°角,如下图所示,从此刻起动车组保持该情形不变,求:(tan14°=0.25,g=10m/s2)(1)动车组是匀加速直线运动还是匀减速直线运动;(2)动车组的加速度大小;(3)动车组若作匀减速直线运动,30s内运动的距离。
如图所示,质量为m、边长为L的正方形线框,在竖直平面内从有界的匀强磁场上方由静止自由下落.线框电阻为R,匀强磁场的宽度为H(L<H),磁感应强度为B.线框下落过程中ab边始终与磁场边界平行且水平.已知ab边刚进入磁场和刚穿出磁场时线框都立即做减速运动,且瞬时加速度大小都是,求:(1)ab边刚进入磁场与ab边刚出磁场时的速度大小;(2)线框进入磁场的过程中产生的热量.
水上滑梯可简化成如图所示的模型,斜槽AB和水平槽BC平滑连接,斜槽AB的竖直高度H=5.0m,倾角θ=37°。BC面与水面的距离h=0.80m,人与AB、BC间的摩擦均忽略不计。取重力加速度g=10m/s2,cos37°=0.8,sin37°=0.6。一同学从滑梯顶端A点无初速地自由滑下,求:(1)该同学沿斜槽AB下滑时加速度的大小a;(2)该同学滑到B点时速度的大小vB;(3)从C点滑出至落到水面的过程中,该同学在水平方向位移的大小x。
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。(不计空气阻力)求:(1)滑块经过B点时速度的大小;(2)滑块冲到圆弧轨道最低点B时对轨道的压力;(3)滑块在圆弧轨道BC段克服摩擦力所做的功。
1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于真空中的两个D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直. 设两D形盒之间所加的交流电压为U,被加速的粒子质量为m、电量为q,粒子从D形盒一侧开始被加速(初动能可以忽略),经若干次加速后粒子从D形盒边缘射出.求:(1)粒子从静止开始第1次经过两D形盒间狭缝加速后的速度大小(2)粒子第一次进入D型盒磁场中做圆周运动的轨道半径(3)粒子至少经过多少次加速才能从回旋加速器D形盒射出
2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功。图1为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图。飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止。若航母保持静止,在某次降落中,以飞机着舰为计时起点,飞机的速度随时间变化关系如图2所示。飞机在t1=0.4s时恰好钩住阻拦索中间位置,此时速度v1=70m/s;在t2=2.4s时飞机速度v2=10m/s。飞机从t1到t2的运动可看成匀减速直线运动。设飞机受到除阻拦索以外的阻力f大小不变,f=5.0×104N,“歼15”舰载机的质量m=2.0×104kg。(1)若飞机在t1时刻未钩住阻拦索,仍立即关闭动力系统,仅在阻力f的作用下减速,求飞机继续滑行的距离(假设甲板足够长);(2)在t1至t2间的某个时刻,阻拦索夹角α=120°,求此时阻拦索中的弹力T;(3)飞机钩住阻拦索后在甲板上滑行的距离比无阻拦索时少s=898m,求从t2时刻至飞机停止,阻拦索对飞机做的功W。