学校有一台应急备用发电机,内阻为r=1Ω,升压变压器匝数比为1∶4,降压变压器的匝数比为4∶1,输电线的总电阻为R=4Ω,全校22个教室,每个教室用“220V,40W”的灯6盏,要求所有灯都正常发光,求:⑴发电机的输出功率多大? ⑵发电机的电动势多大?⑶输电线上损耗的电功率多大?
如图,与水平面成45°角的平面MN将空间分成I和II两个区域。一质量为m、电荷量为q(q>0)的粒子以速度从平面MN上的点水平右射入I区。粒子在I区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E;在II区运动时,只受到匀强磁场的作用,磁感应强度大小为B,方向垂直于纸面向里。求粒子首次从II区离开时到出发点的距离。粒子的重力可以忽略。
如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。
一电荷量为q(q>0)、质量为m的带电粒子在匀强电场的作用下,在t=0时由静止开始运动,场强随时间变化的规律如图所示。不计重力,求在t=0到t=T的时间间隔内(1)粒子位移的大小和方向;(2)粒子沿初始电场反方向运动的时间。
半径为R,均匀带正电荷的球体在空间产生球对称的电场;场强火小沿半径分布如图所示,图中E0已知,E-r曲线下O-R部分的面积等于R-2R部分的面积。(1)写出E-r曲线下面积的单位;(2)己知带电球在r≥R处的场强E=kQ/r2,式中k为静电力常量,该均匀带电球所带的电荷量Q为多大?(3)求球心与球表面间的电势差△U;(4)质量为m,电荷量为q的负电荷在球面处需具有多大的速度可以刚好运动到2R处?
如图1所示,宽度为的竖直狭长区域内(边界为),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为,表示电场方向竖直向上。时,一带正电、质量为的微粒从左边界上的点以水平速度射入该区域,沿直线运动到点后,做一次完整的圆周运动,再沿直线运动到右边界上的点。为线段的中点,重力加速度为g。上述、、、、为已知量。(1)求微粒所带电荷量和磁感应强度的大小;(2)求电场变化的周期;(3)改变宽度,使微粒仍能按上述运动过程通过相应宽度的区域,求的最小值。