1969年7月16日9时,阿波罗11号飞船飞船在美国卡拉维拉尔角点火升空,拉开人类登月这一伟大历史事件的帷幕。7月20日下午在月面着陆,宇航员阿姆斯特朗为了测量月球的密度,他将一小球从离地面h高处以初速v0水平抛出,测出小球落地点与抛出点间的水平位移为s,若已知月球的半径为R,他能否测出月球的密度,如果能,应该是多少?(万有引力常量为G)
如图所示,在倾角θ=37°的足够长的固定斜面上,有一质量m=1.0kg的物体,其与斜面间动摩擦因数μ=0.20。物体受到平行于斜面向上F="9.6" N的拉力作用,从静止开始运动。已知sin37º=0.60,cos37º=0.80,g取10m/s2。求: 物体在拉力F作用下沿斜面向上运动的加速度大小; 在物体的速度由0增加到2.0m/s的过程中,拉力F对物体所做的功。
如图甲所示,在光滑绝缘的水平桌面上建立一xoy坐标系,平面处在周期性变化的电场和磁场中,电场和磁场的变化规律如图乙所示(规定沿+y方向为电场强度的正方向,竖直向下为磁感应强度的正方向).在t=0时刻,一质量为10g、电荷量为0.1C的带电金属小球自坐标原点O处,以v0=2m/s的速度沿x轴正方向射出.已知E0=0.2N/C、B0=0.2T.求:t=1s末速度的大小和方向;1s~2s内,金属小球在磁场中做圆周运动的半径和周期;在给定的坐标系中,大体画出小球在0到6S内运动的轨迹示意图。6s内金属小球运动至离x轴最远点的位置坐标.
如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里。一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1.8m,连线OA在竖直方向上,圆弧所对应的圆心角=37°。现有一质量m=3.6×10-4kg、电荷量q=9.0×10-4C的带正电的小球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道。小球离开圆弧轨道后在场中做匀速直线运动。不计空气阻力,sin37°=0.6,cos37°=0.8。求:匀强电场场强E的大小;小球刚射入圆弧轨道瞬间对轨道压力的大小。
如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B="0.10" T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外,两区域切点为C.今有质量m=3.2×10-26 kg、带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直射入磁场,它将穿越C点后再从右侧区穿出.求:该离子通过两磁场区域所用的时间.离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指垂直初速度方向上移动的距离).
如图所示,竖直放置的半圆形绝缘轨道半径为R,下端与光滑绝缘水平面平滑连接,整个装置处于方向竖直向上的匀强电场E中。一质量为m、带电量为+q的物块(可视为质点),从水平面上的A点以初速度v0水平向左运动,沿半圆形轨道恰好通过最高点C,场强大小为E(E小于mg/q)。试计算物块在运动过程中克服摩擦力做的功。证明物块离开轨道落回水平面时的水平距离与场强大小E无关,且为一常量。