在地面附近的真空室中,水平平行虚线PQ、MN间有方向水平且垂直于纸面的匀强磁场,PQ与MN相距为2L。一个边长为L、质量为m的均匀金属框abcd,总电阻为R,处于竖直面内,ab边距PQ为L。让金属框由静止开始下落,运动中保证金属框始终在竖直平面内且ab边与PQ平行,当金属框ab边刚进入磁场,金属框即开始做匀速运动。已知重力加速度为g,求(1)匀强磁场的磁感应强度B(2)金属框从开始运动至其ab边刚要出磁场的过程中,金属框产生的焦耳热Q(3)金属框ab边刚要出磁场时的速度v
质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆孤轨道下滑。B、C为圆弧的两端点,其连线水平。已知圆弧半径R=1.0m圆弧对应圆心角,轨道最低点为O,A点距水平面的高度h=0.8m,小物块离开C点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,物块与斜面间的滑动摩擦因数为= (g=10m/s2,sin37°=0.6,cos37°=0.8)试求:
(1)小物块离开A点的水平初速度v1 。
如图,足够长的斜面倾角θ=37°,一物体以v0=12m/s的初速度,从斜面A点沿斜面向上运动,加速度大小为a=8.0m/s2.已知重力加速度g=10m/s2,sin 37°= 0.6,cos 37°= 0.8.求:(1)物体沿斜面上滑的最大距离s;(2)物体与斜面间的动摩擦因数μ;(3)物体沿斜面到达最高点后返回下滑至A点时的速度大小v.
a(1)在《验证机械能守恒定律》的实验中,打点计时器所用电源为50Hz,当地重力加速度的值为9.80m/s2,测得所用重物的质量为1.00kg,甲、乙、丙三学生分别用同一装置打出三条纸带,量出各纸带上第1、2两点间的距离分别为0.18cm、0.19cm、0.25cm,从纸带中可看出 学生在操作上肯定有错误,可能的原因是 。(2)在一次实验中,质量m=1kg的重物自由下落,在纸带上打出一系列的点,如图所示(相邻计数点时间间隔为0.02s),单位cm,那么纸带的 端与重物相连; 打点计时器打下计数点B时,物体的速度vB=" " ; 从起点O到打下计数点B的过程中重力势能减少量△EP=" " ;此过程中物体动能的增加量△EK=" " (g=9.80m/s2); 通过计算,数值上△EP △EK(填“>”、“=”、或“<”),这是因为 ;实验的结论是 。b.在探究小车的加速度a与小车质量M和小车受到的外力F的关系时,⑴探究加速度和力的关系的实验数据描绘出的a-F图象如图所示,下列说法正确的是
⑵由于没有始终满足小车的质量远大于钩码的质量m的关系,结果得到的图象应是下图中的( )
如图所示,两根足够长且平行的光滑金属导轨与水平面成53°固定放置,导轨间连接一阻值为4Ω的电阻R,导轨电阻忽略不计。在两平行虚线L1、L2间有一与导轨所在平面垂直、磁感应强度为B的匀强磁场,磁场区域的宽度为d=0.5m。导体棒a的质量为ma=0.6kg,电阻Ra=4Ω;导体棒b的质量为mb=0.2kg,电阻Rb=12Ω;它们分别垂直导轨放置并始终与导轨接触良好。现从图中的M、N处同时将它们由静止开始释放,运动过程中它们都能匀速穿过磁场区域,当b刚穿出磁场时,a正好进入磁场(g取10m/s2,sin53°=0.8,且不计a、b之间电流的相互作用)。求:(1)在整个过程中,a、b两导体棒分别克服安培力做的功;(2)在a穿越磁场的过程中,a、b两导体棒上产生的焦耳热之比;(3)在穿越磁场的过程中,a、b两导体棒匀速运动的速度大小之比;(4)M点和N点之间的距离。
如图所示,导热性能良好粗细均匀两端封闭的细玻璃管ABCDEF竖直放置。AB段和CD段装有空气,BC段和DE段为水银,EF段是真空,各段长度相同,即AB=BC=CD=DE=EF,管内AB段空气的压强为p,环境温度为T。(1)若要使DE段水银能碰到管顶F,则环境温度至少需要升高到多少?(2)若保持环境温度T不变,将管子在竖直面内缓慢地旋转180°使F点在最下面,求此时管内两段空气柱的压强以及最低点F处的压强。