如图所示,竖直面内一组合轨道由三部分组成;AB段为半径R=0.9m的半圆形,BC段水平、CD段为倾角为=45°的足够长的斜面,各部分间均平滑连接。一质量为m=0.2kg(可视为质点)的小物块,从CD段上的某点M(M距BC的高度为h)由静止释放,小物块运动中与CD段动摩擦因数为μ=0.1,AB、BC部分光滑。取g=10m/s2,求若h=2m,小物块经圆轨道的最低点B时对轨道的压力;h为何值时小物块才能通过圆轨道的最高点A?
如图所示,在一个倾角为θ=37°(cos37°=0.8)的斜面上, O点固定一根细绳,细绳另一端连接一个质点。现将质点放到斜面上P点,由静止释放,已知OP连线水平且间距为绳长,质点滑动到细绳转过角度α=90°的位置时刚好停止。问:(1)质点与斜面间动摩擦因数μ为多少?(2)试描述质点放到斜面上哪些位置时可以平衡?已知最大静摩擦力与滑动摩擦力相等。
如图,在一个平面直角坐标系内,原点O处有一质点,质量为m。为使质点到达坐标为(d,d)的点P,现给质点施以大小为F的恒力,在起初的时间t1内该力方向为x轴正方向,之后的时间t2内该力变为y轴正方向,经过这两段运动质点刚好到达P点。试求:(1)比值t1:t2;(2)质点到达P点时的速度。
甲车停在平直公路上,乙车以速度v0=20m/s从甲车旁驶过,同时甲车启动开始追赶乙车。已知甲车的启动加速度为a=5m/s2,达到其最大速度v=30m/s后做匀速运动。试问:(1)甲车追上乙车时是在加速阶段还是匀速阶段?(2)甲车追上乙车一共所花的时间是多少?
如图半径分别为2R和R的甲、乙两光滑圆形轨道固定放置在同一竖直平面内,两轨道之间由一条水平轨道CD相连,曲面轨道与水平面轨道在B处光滑连接(物块经过B点时没有机械能损失),现有一小物块从斜面上高h处的A点由静止释放,曲面轨道以及水平轨道BC段是光滑的,小物块与CD段以及D右侧的水平轨道间的动摩擦因数均为μ。已知小物块通过甲轨道最高点时与轨道间压力为物块重力的3倍,而后经过有摩擦的CD段后又进入乙轨道运动。(1)求初始释放物块的高度h(2)为避免出现小物块脱离圆形轨道乙而发生撞轨现象,则CD段的长度应满足什么条件?
如图所示在光滑水平Oxy平面的ABCD区域内,小球在区域ABEO和MNCD水平方向均仅受到大小皆为F的水平恒力,在ABEO区域F力的方向沿X轴负方向,在MNCD区域F力的方向沿y轴负方向,在中间的DENM区域不受任何水平力的作用。两恒力区域的边界均是边长为L的正方形,即AO=OM=MD=DC=L,如图所示。(1)在该区域AB边的中点处由静止释放一小球,求小球离开ABCD区域的位置坐标.(2)在ABEO区域内适当位置由静止释放小球,小球恰能从ABCD区域左下角D处(即X轴上X=-2L处)离开,求所有释放点的位置坐标满足的关系。