如图,将电动势为3.0 V的电源接入电路中,测得电源两极间的电压为2.4 V,电源内阻和电动机内阻均为1Ω,求:电路通电10s,有多少其他形式的能转化为电能;电动机的效率
如图所示,在虚线左右两侧均有磁感应强度相同的垂直纸面向外的匀强磁场和场强大小相等方向不同的匀强电场,虚线左侧电场方向水平向右,虚线右侧电场方向竖直向上。左侧电场中有一根足够长的固定绝缘细杆MN,N端位于两电场的交界线上。a、b是两个质量相同的小环(环的半径略大于杆的半径),a环带电,b环不带电,b环套在杆上的N端且处于静止,将a环套在杆上的M端由静止释放,a环先加速后匀速运动到N端,a环与b环在N端碰撞并粘在一起,随即进入右侧场区做半径为 r =" 0.10" m的匀速圆周运动,然后两环由虚线上的P点进入左侧场区。已知a环与细杆MN的动摩擦因数μ=0.20,取g =" 10" m/s2。求:P点的位置;a环在杆上运动的最大速率。
如图,在xOy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于xOy平面的匀强磁场,y轴上离坐标原点4L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电荷量为e).如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:磁感应强度B和电场强度E的大小和方向;如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;电子通过D点时的动能.
如图甲所示,物体A、B的质量分别是4.0kg和8.0kg,用轻弹簧相连接放在光滑的水平面上,物体B左侧与竖直墙壁相接触,另有一物体C从t=0时刻起水平向左运动,在t=5.0s时与物体A相碰,并立即与A有相同的速度一起向左运动(但未粘连)。物块C从向左至又和物体A脱离的速度—时间图像如图乙所示。求物块C的质量;在5s到15s的时间弹簧压缩过程中具有的最大弹性势能;在5s到15s的时间内墙壁对物体B的作用力的冲量的大小和方向;物体A与物块C脱离后至弹簧再次恢复原长时A、B的速度分别是多少?
如图,倾角为θ的斜面固定。有n个质量都为m的相同的小木块(可视为质点)放置在斜面上。相邻两小木块间距离都为,最下端的木块距底端也是,小木块与斜面间的动摩擦因数都为μ。在开始时刻,第一个小木块从斜面顶端以初速度v0沿斜面下滑,其余所有木块都静止,由于第一个木块的下滑将依次引起一系列的碰撞。设每次碰撞的时间极短,在每次碰撞后,发生碰撞的木块都粘在一起运动,直到最后第n个木块到达底端时,速度刚好为零。已知重力加速度为g.求:第一次碰撞后小木块1的速度大小v;从第一个小木块开始运动到第一次碰撞后系统损失的机械能;发生一系列碰撞后,直到最后第n个木块到达底端,在整个过程中,由于碰撞所损失的总机械能总。
如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg的木块,一颗质量为m = 0.01kg的子弹,以vo= 400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R多大时,平抛的水平距离最大? 最大值是多少?(g取10m/s2)