我们知道在一个恒星体系中,各个行星围绕着该恒星的运转半径r及运转周期T之间,一般存在以下关系:的值由于中心的恒星的质量决定。现在,天文学家又发现了相互绕转的三颗恒星,可以将其称为三星系统。如图所示,假设三颗恒星质量相同,均为m,间距也相同,它们仅在彼此的引力作用下绕着三星系统的中心点O做匀速圆周运动,运转轨迹完全相同。它们自身的大小与它们之间的距离相比,自身的大小可以忽略。请你通过计算定量说明:三星系统的运转半径的立方及运转周期的平方的比值应为多少?(万有引力常量G)
用200N竖直向上的拉力将地面上—个质量为10kg的物体提起5m高的位移,空气阻力不计,g取10m/s2, 求:(1)拉力对物体所做的功; (2)物体提高后增加的重力势能; (3)物体提高后具有的动能。
如图,实线是某时刻的波形曲线,虚线是0.2S后的波形曲线,这列波的最大周期和最小波速是多少?若波速是35m/s,则这列波的传播方向如何?
某研究性学习小组首先根据小孔成像原理估测太阳半径,再利用万有引力定律估算太阳的密度.准备的器材有:①不透光圆筒,一端封上不透光的厚纸,其中心扎一小孔,另一端封上透光的薄纸;②毫米刻度尺.已知地球绕太阳公转的周期为T,万有引力常量为G.要求:(1)简述根据小孔成像原理估测太阳半径R的过程.(2)利用万有引力定律推算太阳密度.
如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过足够长的时间后,金属杆达到最大速度vm,在这个过程中,电阻R上产生的热为Q。导轨和金属杆接触良好,它们之间的动摩擦因数为μ,且μ<tanθ。已知重力加速度为g。 (1)求磁感应强度的大小; (2)金属杆在加速下滑过程中,当速度达到时,求此时杆的加速度大小; (3)求金属杆从静止开始至达到最大速度的过程中下降的高度。
发电站通过升压变压器、输电导线和降压变压器把电能输送到用户,如果升压变压器和降压变压器都可视为理想变压器。如图所示 (1)若发电机的输出功率是 100 kW,输出电压是250 V,升压变压器的原、副线圈的匝数比为 1∶25,求升压变压器的输出电压和输电导线中的电流; (2)若输电导线中的电功率损失为输入功率的 4%,求输电导线的总电阻和降压变压器原线圈两端的电压。