如图所示,两带有等量异电荷的平行金属板M、N竖直放置,M、N两板间的距离d=0.5m。现将一质量为m=1×10-2kg、电荷量的带电小球从两极左斜上方A点以=4m/s的初速度水平抛出,A点距离两板上端的高度h=0.2m,之后小球恰好从靠近M板上端处进入两板间,沿直线运动碰到N板上的B点,不计空气阻力,取g=10m/s2,设匀强电场只存在于M、N之间。求:两极板间的电势差;小球由A到B所用总时间;小球到达B点时的动能。
一质量为M=4kg、长为L=3m的木板,在水平向右F=8N的拉力作用下,以ν0=2m/s的速度沿水平面向右匀速运动。某时刻将质量为m=1kg的铁块(看成质点)轻轻地放在木板的最右端,如图.不计铁块与木板间的摩擦。若保持水平拉力不变,请通过计算说明小铁块能否离开木板?若能,进一步求出经过多长时间离开木板?
设长为L的正确方形线框的电阻为R,将以恒定速度匀速穿过有界匀强磁场,磁场的磁感应强度为B,v的方向垂直于B,也垂直于磁场边界,磁场范围的宽度为d,如图所示,则, (1)若L<d,求线框穿过磁场安培力所做的功; (2)若L>d,求线框穿过磁场安培力所做的功。
如图所示,在光滑水平面上放置质量为M=2kg的足够长的小车A,其左端用水平轻绳拉住,且水平表面左端放置质量为m=1kg的小滑块B,A、B间的动摩擦因数为μ=0.1,今用水平恒力F=10N拉B,当B的速度达到2 m/s时,撤去拉力F,并同时剪断绳子(g=10m/s2)(保留两位有效数字) 求:(1)拉力F所做的功? (2)最终B物体的动能。
汤姆生在测定阴极射线比荷时采用的方法是利用电场、磁场偏转法,即测出阴极射线在匀强电场或匀强磁场中穿过一定距离时的偏角。设竖直向下的匀强电场的电场强度为E,阴极射线垂直电场射入、穿过水平距离L后的运动偏角为θ(θ较小,θ≈tanθ)(如图A);以匀强磁场B代替电场,测出经过一段弧长L的运动偏角为φ(如图B),已知阴极射线入射的初速度相同,试以E、B、L、θ、φ表示阴极射线粒子的比荷q/m的关系式。(重力不计)
如图所示,矩形区域I和II内分别存在方向垂直于纸面向外和向里的匀强磁场(AA′、BB′、CC′、DD′为磁场边界,四者相互平行),磁感应强度大小均为B,矩形区域的长度足够长,两磁场宽度及BB′与CC′之间的距离均相同。某种带正电的粒子从AA′上O1处以大小不同的速度沿与O1A成α=30°角进入磁场(如图所示,不计粒子所受重力),当粒子的速度小于某一值时,粒子在区域I内的运动时间均为t0.当速度为v0时,粒子在区域I内的运动时间为t0/5。求: (1)粒子的比荷q/m (2)磁场区域I和II的宽度d; (3)速度为v0的粒子从Ol到DD′所用的时间。