如图,在平面直角坐标系xOy内,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限以ON为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子,从y轴正半轴上y=h处的M点,以速度v0垂直于y轴射入电场,经x轴上x=2h处的P点进入磁场,最后以垂直于y轴的方向射出磁场.不计粒子重力,求:(1)电场强度大小E;(2)粒子在磁场中运动的轨道半径r;(3)粒子从进入电场到离开磁场经历的总时间t.
(17分)如图所示,半径为r、圆心为O1的虚线所围的圆形区域内存在垂直纸面向外的匀强磁场,在磁场右侧有一竖直放置的平行金属板M和N,两板间距离为L,在MN板中央各有一个小孔O2、O3,O1、O2、O3在同一水平直线上,与平行金属板相接的是两条竖直放置间距为L的足够长的光滑金属导轨,导体棒PQ与导轨接触良好,与阻值为R的电阻形成闭合回路(导轨与导体棒的电阻不计),该回路处在磁感应强度大小为B,方向垂直纸面向里的匀强磁场中,整个装置处在真空室中,有一束电荷量为+q、质量为m的粒子流(重力不计),以速率v0从圆形磁场边界上的最低点E沿半径方向射入圆形磁场区域,最后从小孔O3射出.现释放导体棒PQ,其下滑h后开始匀速运动,此后粒子恰好不能从O3射出,而从圆形磁场的最高点F射出.求:(1)圆形磁场的磁感应强度B′.(2)导体棒的质量M.(3)棒下落h的整个过程中,电阻上产生的电热.(4)粒子从E点到F点所用的时间.
山地滑雪是人们喜爱的一项体育运动.一滑雪坡由AB和BC组成,AB是倾角为37°的斜坡,BC是半径为R=5m的圆弧面,圆弧面和斜面相切于B,与水平面相切于C,如图所示,AB竖直高度差hl=8.8m,竖直台阶CD高度差为h2=5m,台阶底端与倾角为37°斜坡DE相连.运动员连同滑雪装备总质量为80kg,从A点由静止滑下通过C点后飞落到DE上(不计空气阻力和轨道的摩擦阻力,g取10m/s2,sin37°=0.6,cos37°=0.8).求:(1)运动员到达C点的速度大小;(2)运动员经过C点时轨道受到的压力大小;(3)运动员在空中飞行的时间.
如图所示,水平放置的汽缸内壁光滑,活塞厚度不计,在、两处设有限制装置,使活塞只能在、之间运动,左面汽缸的容积为,、之间的容积为0.1。开始时活塞在处,缸内气体的压强为0.9(为大气压强),温度为297,现缓慢加热汽缸内气体,直至399.3。求: (1)活塞刚离开处时的温度; (2)缸内气体最后的压强; (3)在右图中画出整个过程的图线。
某压力锅结构如图所示。盖好密封锅盖,将压力阀套在出气孔上,给压力锅加热,当锅内气体压强达到一定值时,气体就把压力阀顶起。假定在压力阀被顶起时,停止加热。(1)若此时锅内气体的体积为V,摩尔体积为V0,阿伏加德罗常数为NA,写出锅内气体分子数的估算表达式。(2)假定在一次放气过程中,锅内气体对压力阀及外界做功1 J,并向外界释放了2 J的热量。锅内原有气体的内能如何变化?变化了多少?(3)已知大气压强P随海拔高度H的变化满足P=P0(1-αH),其中常数α>0。结合气体定律定性分析在不同的海拔高度使用压力锅,当压力阀被顶起时锅内气体的温度有何不同。
一定质量的理想气体由状态A变为状态B,其中AB过程为等压变化。已知VA=0.3m3,TA= 300K、TB=400K。求气体在状态B时的体积。