如图甲所示,两条足够长的光滑平行金属导轨竖直放置,导轨间距L=1m,两导轨的上端间接有电阻,阻值R=2Ω,虚线OO'下方是垂直于导轨平面向里的匀强磁场,磁感应强度B=2T。现将质量为m=0.1Kg,电阻不计的金属杆ab,从OO'上方某处由静止释放,金属杆在下落过程中与导轨保持良好接触,且始终保持水平,不计导轨电阻,已知金属杆下落0.4m的过程中加速度a与下落距离h的关系如图乙所示,g=10m/s2,求:金属杆刚进入磁场时的速度多大?金属杆下落0.4m的过程中,电阻R上产生了多少热量
如图所示,在场强为E的匀强电场中,一绝缘轻质细杆L可绕O点在竖直平面内自由转动,A端有一个带正电的小球,电荷量为q,质量为m。将细杆从水平位置自由释放,则: (1)请说明小球由A到B的过程中电势能如何变化? (2)求出小球在最低点时的速率 (3)求在最低点时绝缘杆对小球的作用力.
公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s,当汽车在晴天干燥沥青路面上以108 km/h的速度匀速行驶时,安全距离为120 m.设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的,若要求安全距离仍为120 m,求汽车在雨天安全行驶的最大速度.
如图所示,在水平地面A处斜抛一皮球,恰好在竖直墙B处垂直碰撞后弹回落到C点,h=20m,S1=30m,S2=20m。 求:(1)抛出时的速度大小v0; (2)落地时的速度大小vC。
在如图所示的平面直角坐标系中存在一个半径R=0.2 m的圆形匀强磁场区域,磁感应强度B=1.0 T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O相切.y轴右侧存在电场强度大小为E=1.0×104 N/C的匀强电场,方向沿y轴正方向,电场区域宽度L=0.1 m.现从坐标为(-0.2 m,-0.2 m)的P点发射出质量m=2.0×10-9 kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103 m/s.重力不计. (1)求该带电粒子射出电场时的位置坐标; (2)为了使该带电粒子能从坐标为(0.1 m,-0.05 m)的点回到电场,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.
如图所示,在高h1=30 m的光滑水平平台上,质量m=1 kg的小物块压缩弹簧后被锁扣K锁住,储存了一定量的弹性势能Ep.若打开锁扣K,物块将以一定的水平速度v1向右滑下平台做平抛运动,并恰好能从光滑圆弧形轨道BC上B点的切线方向进入圆弧形轨道.B点的高度h2=15 m,圆弧轨道的圆心O与平台等高,轨道最低点C的切线水平,并与地面上长L=70 m的水平粗糙轨道CD平滑连接;小物块沿轨道BCD运动与右边墙壁发生碰撞.g=10 m/s2.求: (1)小物块由A运动到B的时间; (2)小物块原来压缩弹簧时储存的弹性势能Ep的大小; (3)若小物块与墙壁只发生一次碰撞,碰后速度等大反向,反向运动过程中没有冲出B点,最后停在轨道CD上的某点P(P点没画出).设小物块与轨道CD之间的动摩擦因数为μ,求μ的取值范围.