一质量m=2.0kg的小物块以一定的初速度冲上一倾角为37º足够长的斜面,某同学利用传感器测出了小物块从一开始冲上斜面到往后上滑过程中多个时刻的瞬时速度,并用计算机做出了 小物块上滑过程的速度—时间图线,如图所示。 (取sin37º="0.6 " cos37º="0.8" g =10m/s2)求: 小物块与斜面间的动摩擦因数; 小物块所到达斜面最高点与斜面底端距离; 小物块返回斜面底端时的动能。
如图为某种透明材料制成的边长为4cm,横截面为正三角形的三棱镜,将其置于空气中,当一细光束从距离顶点A为1cm的D点垂直于AB面入射时,在AC面上刚好发生全反射,光在真空中的速度c=3×108m/s。求:①此透明材料的折射率;②光通过三棱镜的时间。
一气象探测气球,在充有压强为1.00atm(即76.0cmHg)、温度为的氦气时,体积为4.5m3。在缓慢上升至海拔6.0km高空的过程中,气球内氦气压强逐渐减小到此高度上的大气压38.0cmHg,气球内部因启动一持续加热过程而维持其温度不变。此后停止加热,保持高度不变。已知在这一海拔高度气温为。求:(1)氦气在停止加热前的体积(2)氦气在停止加热较长一段时间后的体积。
如图所示,一固定斜面体,其斜边与水平底边的夹角,BC为一段光滑圆弧轨道,DE为半圆形光滑轨道,两圆弧轨道均固定于竖直平面内,一滑板静止在光滑的地面上,右端紧靠C点,上表面所在平面与两圆弧分别相切于C、D两点。一物块被轻放在斜面上F点由静止释放,物块离开斜面后恰好在B点沿切线进入BC段圆弧轨道,再经C点滑上滑板,滑板运动到D点时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,DE半圆弧轨道和BC圆弧轨道的半径均为R,斜面体水平底边与滑板上表面的高度差,板长l=6.5R,板左端到D点的距离L在范围内取值,F点距A点的距离s=12.5R,物块与斜面、物块与滑板间的动摩擦因数均为,重力加速度取g。已知sin37°=0.6,cos37°=0.8。求:(结果用字母m、g、R、L表示)(1)求物块滑到A点的速度大小;(2)求物块滑到C点时所受圆弧轨道的支持力的大小;(3)试讨论物块从滑上滑板到离开左端的过程中,克服摩擦力做的功Wf与L的关系;并判断物块能否滑到DE轨道的中点。
如图所示,两平行的光滑金属导轨安装在一倾角的光滑绝缘斜面上,导轨间距L,导轨电阻忽略不计且足够长,一宽度为d的有界匀强磁场垂直于斜面向上,磁感应强度为B。另有一长为2d的绝缘杆将一导体棒和一边长为d(d <L)的正方形线框连在一起组成的固定装置,总质量为m,导体棒中通有大小恒为I的电流,将整个装置置于导轨上。开始时导体棒恰好位于磁场的下边界处,由静止释放后装置沿斜面向上运动,当线框的下边运动到磁场的上边界MN处时装置的速度恰好为零,之后装置将向下运动,然后再向上运动,经过若干次往返后,最终整个装置将在斜面上作稳定的往复运动。已知B=2.5T,I=0.8A,L=0.5m,m=0.04kg,d=0.38m,取g=10 m/s2,sin37°=0.6,cos37°=0.8。求:(1)装置被释放的瞬间,导线棒加速度的大小;(2)从装置被释放到线框下边运动到磁场上边界MN处的过程中,线框中产生的热量;(3)装置作稳定的往复运动后,导体棒的最高位置与最低位置之间的距离。
在研究摩擦力特点的实验中,将木块放在足够长的固定的水平长木板上,如图1所示。用力沿水平方向拉木块,拉力从0开始逐渐增大,分别用力传感器采集拉力和木块所受到的摩擦力,并用计算机绘制出摩擦力Ff 随拉力F变化的图象,如图2所示。已知木块质量为0.78kg,取g=10m/s2,sin37°=0.60,cos37°=0.80。求:(1)木块与长木板间的动摩擦因数;(2)若木块在与水平方向成斜向右上方的恒定拉力F作用下,以a=2.0m/s2的加速度从静止开始做匀变速直线运动,如图3所示,则拉力F的大小应为多大?(3)在(2)中力作用2s后撤去拉力F,木块还能滑行多远?