如图所示,倾角θ=37º的斜面固定在水平面上。质量m=1.0kg的小物块受到沿斜面向上的F=9.0N的拉力作用,小物块由静止沿斜面向上运动。小物块与斜面间的动摩擦因数μ=0.25。(斜面足够长,取g=10m/s2,sin37º=0.6,cos37º=0.8) 求小物块运动过程中所受摩擦力的大小; 求在拉力的作用过程中,小物块加速度的大小; 若在小物块沿斜面向上运动0.80m时,将拉力F撤去,求此后小物块沿斜面向上运动的距离。
如图所示的电场,等势面是一簇互相平行的竖直平面,间隔均为d,各面电势已在图中标出,现有一质量为m的带电小球以速度v0,方向与水平方向成45°角斜向上射入电场,要使小球做直线运动.问: (1)小球应带何种电荷?电荷量是多少? (2)在入射方向上小球最大位移量是多少?(电场足够大)
如图所示,BC是半径为R的圆弧形的光滑且绝缘的轨道,位于竖直平面内,其下端与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度为E.今有一质量为m、带正电q的小滑块(体积很小可视为质点),从C点由静止释放,滑到水平轨道上的A点时速度减为零.若已知滑块与水平轨道间的动摩擦因数为μ,求: (1)滑块通过B点时的速度大小Vb? (2)水平轨道上A、B两点之间的距离S?
质量为m的带电小球用细绳系住悬挂于匀强电场中,如图所示,静止时θ角为60°,求: (1)小球带何种电性. (2)若将绳烧断后,2s末小球的速度是多大.(g取10m/s2)
如图所示,MN、PQ为竖直放置的两根足够长平行光滑导轨,相距为d=0.5m,M、P之间连一个R=1.5Ω的电阻,导轨间有一根质量为m=0.2kg,电阻为r=0.5Ω的导体棒EF,导体棒EF可以沿着导轨自由滑动,滑动过程中始终保持水平且跟两根导轨接触良好.整个装置的下半部分处于水平方向且与导轨平面垂直的匀强磁场中,磁感应强度为B=2T.取重力加速度g=10m/s2,导轨电阻不计.若导体棒EF从磁场上方某处沿导轨下滑,进入匀强磁场时速度为v=2m/s, (1)求此时通过电阻R的电流大小和方向 (2)求此时导体棒EF的加速度大小.
用磁场可以约束带电离子的轨迹,如图所示,宽d=2cm的有界匀强磁场的横向范围足够大,磁感应强度方向垂直纸面向里,B=1T.现有一束带正电的粒子从O点以v=2×106m/s的速度沿纸面垂直边界进入磁场.粒子的电荷量q=1.6×10﹣19C,质量m=3.2×10﹣27kg.求: (1)粒子在磁场中运动的轨道半径r和运动时间t是多大? (2)粒子保持原有速度,又不从磁场上边界射出,则磁感应强度最小为多大?