两颗卫星在同一轨道平面内绕地球做匀速圆周运动,地球半径为,卫星离地面的高度等于,卫星离地面高度为,则:(1)、两卫星运行周期之比是多少?(2)若某时刻两卫星正好同时通过地面同一点正上方,则至少经过多少个周期与相距最远?
如图所示,粗糙水平轨道AB与竖直平面内的光滑半圆轨道BDC在B处平滑连接,B、C分别为半圆轨道的最低点和最高点,D为半圆轨道的最右端。一个质量m的小物体P被一根细线拴住放在水平轨道上,细线的左端固定在竖直墙壁上。在墙壁和P之间夹一根被压缩的轻弹簧,此时P到B点的距离为x0。物体P与水平轨道间的动摩擦因数为μ,半圆轨道半径为R。现将细线剪断,P被弹簧向右弹出后滑上半圆轨道,恰好能通过C点。试求:(1)物体经过B点时的速度的大小?(2)细线未剪断时弹簧的弹性势能的大小?(3)物体经过D点时合力的大小?
如图所示,一根长0.1 m的细线,一端系着一个质量为0.18 kg的小球,拉住线的另一端,使小球在光滑的水平桌面上做匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线受到的拉力比开始时大40 N,求:(1)线断开前的瞬间,线受到的拉力大小;(2)线断开的瞬间,小球运动的线速度大小;(3)如果小球离开桌面时,速度方向与桌边缘的夹角为60° ,桌面高出地面0.8 m,求小球飞出后的落地点距桌边缘的水平距离.
如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求(1)物块在车面上滑行的时间t;(2)物块克服摩擦力做的功;(3)在此过程中转变成的内能.
在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行.劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面.水平面处于场强E=5×104 N/C、方向水平向右的匀强电场中.已知A、B的质量分别为mA=0.1 kg和mB=0.2 kg,B所带电荷量q=+4×10-6 C.设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电荷量不变.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求B所受静摩擦力的大小;(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6 m/s2开始做匀加速直线运动.A从M到N的过程中,B的电势能增加了ΔEp=0.06 J.已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4.求A到达N点时拉力F的瞬时功率.
如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50 m,一端接有阻值R=1.0 Ω的电阻.质量m=0.10 kg的金属棒ab置于导轨上,与导轨垂直,电阻r=0.25 Ω.整个装置处于磁感应强度B=1. 0 T的匀强磁场中,磁场方向垂直于导轨平面向下.t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始运动,运动过程中电路中的电流随时间t变化的关系如图乙所示.电路中其他部分电阻忽略不计,g取10 m/s2.求: (1)4.0 s末金属棒ab瞬时速度的大小;(2)3.0 s末力F的瞬时功率;(3)已知0~4.0 s时间内电阻R上产生的热量为0.64 J,试计算F对金属棒所做的功.